Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7974): 552-556, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468631

RESUMO

Fatigue in metals involves gradual failure through incremental propagation of cracks under repetitive mechanical load. In structural applications, fatigue accounts for up to 90% of in-service failure1,2. Prevention of fatigue relies on implementation of large safety factors and inefficient overdesign3. In traditional metallurgical design for fatigue resistance, microstructures are developed to either arrest or slow the progression of cracks. Crack growth is assumed to be irreversible. By contrast, in other material classes, there is a compelling alternative based on latent healing mechanisms and damage reversal4-9. Here, we report that fatigue cracks in pure metals can undergo intrinsic self-healing. We directly observe the early progression of nanoscale fatigue cracks, and as expected, the cracks advance, deflect and arrest at local microstructural barriers. However, unexpectedly, cracks were also observed to heal by a process that can be described as crack flank cold welding induced by a combination of local stress state and grain boundary migration. The premise that fatigue cracks can autonomously heal in metals through local interaction with microstructural features challenges the most fundamental theories on how engineers design and evaluate fatigue life in structural materials. We discuss the implications for fatigue in a variety of service environments.

2.
Nat Commun ; 9(1): 3386, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140001

RESUMO

Hydrogen embrittlement (HE) causes sudden, costly failures of metal components across a wide range of industries. Yet, despite over a century of research, the physical mechanisms of HE are too poorly understood to predict HE-induced failures with confidence. We use non-destructive, synchrotron-based techniques to investigate the relationship between the crystallographic character of grain boundaries and their susceptibility to hydrogen-assisted fracture in a nickel superalloy. Our data lead us to identify a class of grain boundaries with striking resistance to hydrogen-assisted crack propagation: boundaries with low-index planes (BLIPs). BLIPs are boundaries where at least one of the neighboring grains has a low Miller index facet-{001}, {011}, or {111}-along the grain boundary plane. These boundaries deflect propagating cracks, toughening the material and improving its HE resistance. Our finding paves the way to improved predictions of HE based on the density and distribution of BLIPs in metal microstructures.

3.
Sci Rep ; 8(1): 6761, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712970

RESUMO

One way of expediting materials development is to decrease the need for new experiments by making greater use of published literature. Here, we use data mining and automated image analysis to gather new insights on nanoporous gold (NPG) without conducting additional experiments or simulations. NPG is a three-dimensional porous network that has found applications in catalysis, sensing, and actuation. We assemble and analyze published images from among thousands of publications on NPG. These images allow us to infer a quantitative description of NPG coarsening as a function of time and temperature, including the coarsening exponent and activation energy. They also demonstrate that relative density and ligament size in NPG are not correlated, indicating that these microstructure features are independently tunable. Our investigation leads us to propose improved reporting guidelines that will enhance the utility of future publications in the field of dealloyed materials.

4.
Sci Rep ; 8(1): 5009, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29568069

RESUMO

Damage caused by implanted helium (He) is a major concern for material performance in future nuclear reactors. We use a combination of experiments and modeling to demonstrate that amorphous silicon oxycarbide (SiOC) is immune to He-induced damage. By contrast with other solids, where implanted He becomes immobilized in nanometer-scale precipitates, He in SiOC remains in solution and outgasses from the material via atomic-scale diffusion without damaging its free surfaces. Furthermore, the behavior of He in SiOC is not sensitive to the exact concentration of carbon and hydrogen in this material, indicating that the composition of SiOC may be tuned to optimize other properties without compromising resistance to implanted He.

5.
Sci Adv ; 3(11): eaao2710, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152573

RESUMO

Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with the amount of implanted He, indicating that these channels ultimately interconnect into percolating "vascular" networks. Vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.

6.
Sci Rep ; 7(1): 3900, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634322

RESUMO

Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bonds and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.

7.
Sci Rep ; 5: 15428, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486278

RESUMO

Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. This work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.

8.
Sci Rep ; 5: 13051, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26269200

RESUMO

Amorphous silicon oxycarbide (SiOC) is of great technological interest. However, its atomic-level structure is not well understood. Using density functional theory calculations, we show that the clustering tendency of C atoms in SiOC is extremely sensitive to hydrogen (H): without H, the C-C interaction is attractive, leading to enrichment of aggregated SiC4 tetrahedral units; with hydrogen, the C-C interaction is repulsive, leading to enrichment of randomly distributed SiCO3 tetrahedral units. Our results suggest that conflicting experimental characterizations of C distributions may be due to differing amounts of H present in the samples investigated. Our work also opens a path for tailoring the properties of SiOC by using the total H content to control the C distribution.

9.
Nat Commun ; 6: 6164, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652438

RESUMO

Hydrogen embrittlement (HE) causes engineering alloys to fracture unexpectedly, often at considerable economic or environmental cost. Inaccurate predictions of component lifetimes arise from inadequate understanding of how alloy microstructure affects HE. Here we investigate hydrogen-assisted fracture of a Ni-base superalloy and identify coherent twin boundaries (CTBs) as the microstructural features most susceptible to crack initiation. This is a surprising result considering the renowned beneficial effect of CTBs on mechanical strength and corrosion resistance of many engineering alloys. Remarkably, we also find that CTBs are resistant to crack propagation, implying that hydrogen-assisted crack initiation and propagation are governed by distinct physical mechanisms in Ni-base alloys. This finding motivates a re-evaluation of current lifetime models in light of the dual role of CTBs. It also indicates new paths to designing materials with HE-resistant microstructures.

10.
Adv Mater ; 25(48): 6975-9, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24352985

RESUMO

A novel interface engineering strategy is proposed to simultaneously achieve superior irradiation tolerance, high strength, and high thermal stability in bulk nanolayered composites of a model face-centered-cubic (Cu)/body-centered-cubic (Nb) system. By synthesizing bulk nanolayered Cu-Nb composites containing interfaces with controlled sink efficiencies, a novel material is designed in which nearly all irradiation-induced defects are annihilated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...