Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(24): 246504, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949333

RESUMO

We propose local electromagnetic noise spectroscopy as a versatile and noninvasive tool to study Wigner crystal phases of strongly interacting two-dimensional electronic systems. In-plane imaging of the local noise is predicted to enable single-site resolution of the electron crystal when the sample-probe distance is less than the interelectron separation. At larger sample-probe distances, noise spectroscopy encodes information about the low-energy Wigner crystal phonons, including the dispersion of the transverse shear mode, the pinning resonance due to disorder, and optical modes emerging, for instance, in bilayer crystals. We discuss the potential utility of local noise probes in analyzing the rich set of phenomena expected to occur in the vicinity of the melting transition.

2.
Nature ; 629(8011): 323-328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720039

RESUMO

The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions1-8. However, in kinetically frustrated lattices, itinerant spin polarons-bound states of a dopant and a spin flip-have been theoretically predicted even in the absence of superexchange coupling9-14. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect15,16. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems10,11. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials17-20.

3.
Nature ; 629(8011): 317-322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720043

RESUMO

Quantum interference can deeply alter the nature of many-body phases of matter1. In the case of the Hubbard model, Nagaoka proved that introducing a single itinerant charge can transform a paramagnetic insulator into a ferromagnet through path interference2-4. However, a microscopic observation of this kinetic magnetism induced by individually imaged dopants has been so far elusive. Here we demonstrate the emergence of Nagaoka polarons in a Hubbard system realized with strongly interacting fermions in a triangular optical lattice5,6. Using quantum gas microscopy, we image these polarons as extended ferromagnetic bubbles around particle dopants arising from the local interplay of coherent dopant motion and spin exchange. By contrast, kinetic frustration due to the triangular geometry promotes antiferromagnetic polarons around hole dopants7. Our work augurs the exploration of exotic quantum phases driven by charge motion in strongly correlated systems and over sizes that are challenging for numerical simulation8-10.

4.
Nat Commun ; 15(1): 3638, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684735

RESUMO

Photonic time crystals refer to materials whose dielectric properties are periodic in time, analogous to a photonic crystal whose dielectric properties is periodic in space. Here, we theoretically investigate photonic time-crystalline behaviour initiated by optical excitation above the electronic gap of the excitonic insulator candidate Ta2NiSe5. We show that after electron photoexcitation, electron-phonon coupling leads to an unconventional squeezed phonon state, characterised by periodic oscillations of phonon fluctuations. Squeezing oscillations lead to photonic time crystalline behaviour. The key signature of the photonic time crystalline behaviour is terahertz (THz) amplification of reflectivity in a narrow frequency band. The theory is supported by experimental results on Ta2NiSe5 where photoexcitation with short pulses leads to enhanced THz reflectivity with the predicted features. We explain the key mechanism leading to THz amplification in terms of a simplified electron-phonon Hamiltonian motivated by ab-initio DFT calculations. Our theory suggests that the pumped Ta2NiSe5 is a gain medium, demonstrating that squeezed phonon noise may be used to create THz amplifiers in THz communication applications.

5.
Nat Commun ; 15(1): 2300, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485935

RESUMO

Optical driving of materials has emerged as a versatile tool to control their properties, with photo-induced superconductivity being among the most fascinating examples. In this work, we show that light or lattice vibrations coupled to an electronic interband transition naturally give rise to electron-electron attraction that may be enhanced when the underlying boson is driven into a non-thermal state. We find this phenomenon to be resonantly amplified when tuning the boson's frequency close to the energy difference between the two electronic bands. This result offers a simple microscopic mechanism for photo-induced superconductivity and provides a recipe for designing new platforms in which light-induced superconductivity can be realized. We discuss two-dimensional heterostructures as a potential test ground for light-induced superconductivity concretely proposing a setup consisting of a graphene-hBN-SrTiO3 heterostructure, for which we estimate a superconducting Tc that may be achieved upon driving the system.

6.
Nat Mater ; 23(6): 796-802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38172546

RESUMO

Condensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron-hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice. Here we employ nonlinear terahertz spectroscopy to disentangle such obscurants through measurement of the quantum dynamics. We target Ta2NiSe5, a putative room-temperature excitonic insulator in which electron-lattice coupling dominates the structural transition (Tc = 326 K), hindering identification of excitonic correlations. A pronounced increase in the terahertz reflectivity manifests following photoexcitation and exhibits a Bose-Einstein condensation-like temperature dependence well below the Tc, suggesting an approach to monitor the exciton condensate dynamics. Nonetheless, dynamic condensate-phonon coupling remains as evidenced by peaks in the enhanced reflectivity spectrum at select infrared-active phonon frequencies, indicating that parametric reflectivity enhancement arises from phonon squeezing. Our results highlight that coherent dynamics can drive parametric stimulated emission.

7.
Sci Adv ; 9(46): eadh2594, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976365

RESUMO

Simulations of nuclear magnetic resonance (NMR) experiments can be an important tool for extracting information about molecular structure and optimizing experimental protocols but are often intractable on classical computers for large molecules such as proteins and for protocols such as zero-field NMR. We demonstrate the first quantum simulation of an NMR spectrum, computing the zero-field spectrum of the methyl group of acetonitrile using four qubits of a trapped-ion quantum computer. We reduce the sampling cost of the quantum simulation by an order of magnitude using compressed sensing techniques. We show how the intrinsic decoherence of NMR systems may enable the zero-field simulation of classically hard molecules on relatively near-term quantum hardware and discuss how the experimentally demonstrated quantum algorithm can be used to efficiently simulate scientifically and technologically relevant solid-state NMR experiments on more mature devices. Our work opens a practical application for quantum computation.

8.
Phys Rev Lett ; 131(7): 070801, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656851

RESUMO

The transition between distinct phases of matter is characterized by the nature of fluctuations near the critical point. We demonstrate that noise spectroscopy can not only diagnose the presence of a phase transition, but can also determine fundamental properties of its criticality. In particular, by analyzing a scaling collapse of the decoherence profile, one can directly extract the critical exponents of the transition and identify its universality class. Our approach naturally captures the presence of conservation laws and distinguishes between classical and quantum phase transitions. In the context of quantum magnetism, our proposal complements existing techniques and provides a novel toolset optimized for interrogating two-dimensional magnetic materials.

9.
Phys Rev Lett ; 130(21): 216901, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295119

RESUMO

The ground-state properties and excitation energies of a quantum emitter can be modified in the ultrastrong coupling regime of cavity quantum electrodynamics (QED) where the light-matter interaction strength becomes comparable to the cavity resonance frequency. Recent studies have started to explore the possibility of controlling an electronic material by embedding it in a cavity that confines electromagnetic fields in deep subwavelength scales. Currently, there is a strong interest in realizing ultrastrong-coupling cavity QED in the terahertz (THz) part of the spectrum, since most of the elementary excitations of quantum materials are in this frequency range. We propose and discuss a promising platform to achieve this goal based on a two-dimensional electronic material encapsulated by a planar cavity consisting of ultrathin polar van der Waals crystals. As a concrete setup, we show that nanometer-thick hexagonal boron nitride layers should allow one to reach the ultrastrong coupling regime for single-electron cyclotron resonance in a bilayer graphene. The proposed cavity platform can be realized by a wide variety of thin dielectric materials with hyperbolic dispersions. Consequently, van der Waals heterostructures hold the promise of becoming a versatile playground for exploring the ultrastrong-coupling physics of cavity QED materials.


Assuntos
Campos Eletromagnéticos , Elétrons , Física , Vibração
10.
Phys Rev Lett ; 130(19): 196001, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243633

RESUMO

A recent experiment showed that a proximity-induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both an Ising spin-orbit coupling and an in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment. Our model also suggests the possible existence of a phase at small anisotropy and magnetic field which exhibits quasilong-range ordered spin-singlet charge 4e superconductivity, even while the triplet 2e superconducting order only exhibits short-ranged correlations. Finally, we discuss relevant experimental signatures.

11.
Proc Natl Acad Sci U S A ; 120(17): e2221688120, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071679

RESUMO

The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta2NiSe5 being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material's electronic and crystal structure after light excitation reveals spectroscopic fingerprints that are compatible only with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the gap opening. Our results suggest that the spontaneous symmetry breaking in Ta2NiSe5 is mostly of structural character, hampering the possibility to realize quasi-dissipationless energy transport.

12.
Phys Rev Lett ; 130(14): 147001, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084441

RESUMO

Twisted bilayer graphene (TBG) exhibits extremely low Fermi velocities for electrons, with the speed of sound surpassing the Fermi velocity. This regime enables the use of TBG for amplifying vibrational waves of the lattice through stimulated emission, following the same principles of operation of free-electron lasers. Our Letter proposes a lasing mechanism relying on the slow-electron bands to produce a coherent beam of acoustic phonons. We propose a device based on undulated electrons in TBG, which we dub the phaser. The device generates phonon beams in a terahertz (THz) frequency range, which can then be used to produce THz electromagnetic radiation. The ability to generate coherent phonons in solids breaks new ground in controlling quantum memories, probing quantum states, realizing nonequilibrium phases of matter, and designing new types of THz optical devices.

13.
Nature ; 613(7944): 463-467, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653561

RESUMO

Conventional superconductivity emerges from pairing of charge carriers-electrons or holes-mediated by phonons1. In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations2, as captured by models of mobile charges in doped antiferromagnets3. However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems4-8, in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions9. Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings10, we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole-hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity.

14.
Phys Rev Lett ; 129(22): 220401, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493451

RESUMO

We present an Ansatz for the ground states of the quantum Sherrington-Kirkpatrick model, a paradigmatic model for quantum spin glasses. Our Ansatz, based on the concept of generalized coherent states, very well captures the fundamental aspects of the model, including the ground state energy and the position of the spin glass phase transition. It further enables us to study some previously unexplored features, such as the nonvanishing longitudinal field regime and the entanglement structure of the ground states. We find that the ground state entanglement can be captured by a simple ensemble of weighted graph states with normally distributed phase gates, leading to a volume law entanglement, contrasting with predictions based on entanglement monogamy.


Assuntos
Transição de Fase
15.
Phys Rev Lett ; 129(23): 237002, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563226

RESUMO

We study the electrodynamics of spin triplet superconductors including dipolar interactions, which give rise to an interplay between the collective spin dynamics of the condensate and orbital Meissner screening currents. Within this theory, we identify a class of spin waves that originate from the coupled dynamics of the spin-symmetry breaking triplet order parameter and the electromagnetic field. In particular, we study magnetostatic spin wave modes that are localized to the sample surface. We show that these surface modes can be excited and detected using experimental techniques such as microwave spin wave resonance spectroscopy or nitrogen-vacancy magnetometry, and propose that the detection of these modes offers a means for the identification of spin triplet superconductivity.

16.
J Chem Phys ; 156(17): 174110, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525637

RESUMO

We introduce a new theoretical approach for analyzing pump and probe experiments in non-linear systems of optical phonons. In our approach, the effect of coherently pumped polaritons is modeled as providing time-periodic modulation of the system parameters. Within this framework, propagation of the probe pulse is described by the Floquet version of Maxwell's equations and leads to phenomena such as frequency mixing and resonant parametric production of polariton pairs. We analyze light reflection from a slab of insulating material with a strongly excited phonon-polariton mode and obtain analytic expressions for the frequency-dependent reflection coefficient for the probe pulse. Our results are in agreement with recent experiments by Cartella et al. [Proc. Natl. Acad. Sci. U. S. A. 115, 12148 (2018)], which demonstrated light amplification in a resonantly excited SiC insulator. We show that, beyond a critical pumping strength, such systems should exhibit Floquet parametric instability, which corresponds to resonant scattering of pump polaritons into pairs of finite momentum polaritons. We find that the parametric instability should be achievable in SiC using current experimental techniques and discuss its signatures, including the non-analytic frequency dependence of the reflection coefficient and the probe pulse afterglow. We discuss possible applications of the parametric instability phenomenon and suggest that similar types of instabilities can be present in other photoexcited non-linear systems.

17.
Phys Rev Lett ; 127(22): 227401, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889631

RESUMO

Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction, we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising platforms to host hidden orders after laser excitation.

18.
Phys Rev Lett ; 127(18): 185302, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767413

RESUMO

The challenge of understanding the dynamics of a mobile impurity in an interacting quantum many-body medium comes from the necessity of including entanglement between the impurity and excited states of the environment in a wide range of energy scales. In this Letter, we investigate the motion of a finite mass impurity injected into a three-dimensional quantum Bose fluid as it starts shedding Bogoliubov excitations. We uncover a transition in the dynamics as the impurity's velocity crosses a critical value that depends on the strength of the interaction between the impurity and bosons as well as the impurity's recoil energy. We find that in injection experiments, the two regimes differ not only in the character of the impurity velocity abatement but also exhibit qualitative differences in the Loschmidt echo, density ripples excited in the Bose-Einstein condensate, and momentum distribution of scattered bosonic particles. The transition is a manifestation of a dynamical quantum Cherenkov effect and should be experimentally observable with ultracold atoms using Ramsey interferometry, rf spectroscopy, absorption imaging, and time-of-flight imaging.

19.
Science ; 374(6563): 82-86, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591626

RESUMO

The competition between antiferromagnetism and hole motion in two-dimensional Mott insulators lies at the heart of a doping-dependent transition from an anomalous metal to a conventional Fermi liquid. We observe such a crossover in Fermi-Hubbard systems on a cold-atom quantum simulator and reveal the transformation of multipoint correlations between spins and holes upon increasing doping at temperatures around the superexchange energy. Conventional observables, such as spin susceptibility, are furthermore computed from the microscopic snapshots of the system. Starting from a magnetic polaron regime, we find the system evolves into a Fermi liquid featuring incommensurate magnetic fluctuations and fundamentally altered correlations. The crossover is completed for hole dopings around 30%. Our work benchmarks theoretical approaches and discusses possible connections to lower-temperature phenomena.

20.
Nature ; 595(7865): 48-52, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194017

RESUMO

One of the first theoretically predicted manifestations of strong interactions in many-electron systems was the Wigner crystal1-3, in which electrons crystallize into a regular lattice. The crystal can melt via either thermal or quantum fluctuations4. Quantum melting of the Wigner crystal is predicted to produce exotic intermediate phases5,6 and quantum magnetism7,8 because of the intricate interplay of Coulomb interactions and kinetic energy. However, studying two-dimensional Wigner crystals in the quantum regime has often required a strong magnetic field9-11 or a moiré superlattice potential12-15, thus limiting access to the full phase diagram of the interacting electron liquid. Here we report the observation of bilayer Wigner crystals without magnetic fields or moiré potentials in an atomically thin transition metal dichalcogenide heterostructure, which consists of two MoSe2 monolayers separated by hexagonal boron nitride. We observe optical signatures of robust correlated insulating states at symmetric (1:1) and asymmetric (3:1, 4:1 and 7:1) electron doping of the two MoSe2 layers at cryogenic temperatures. We attribute these features to bilayer Wigner crystals composed of two interlocked commensurate triangular electron lattices, stabilized by inter-layer interaction16. The Wigner crystal phases are remarkably stable, and undergo quantum and thermal melting transitions at electron densities of up to 6 × 1012 per square centimetre and at temperatures of up to about 40 kelvin. Our results demonstrate that an atomically thin heterostructure is a highly tunable platform for realizing many-body electronic states and probing their liquid-solid and magnetic quantum phase transitions4-8,17.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...