Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 109(2): 432-446, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555243

RESUMO

Ozone (O3 ) is a damaging air pollutant to crops. As one of the most reactive oxidants known, O3 rapidly forms other reactive oxygen species (ROS) once it enters leaves through stomata. Those ROS in turn can cause oxidative stress, reduce photosynthesis, accelerate senescence, and decrease crop yield. To improve and adapt our feed, fuel, and food supply to rising O3 pollution, a number of Free Air Concentration Enrichment (O3 -FACE) facilities have been developed around the world and have studied key staple crops. In this review, we provide an overview of the FACE facilities and highlight some of the lessons learned from the last two decades of research. We discuss the differences between C3 and C4 crop responses to elevated O3 , the possible trade-off between productivity and protection, genetic variation in O3 response within and across species, and how we might leverage this observed variation for crop improvement. We also highlight the need to improve understanding of the interaction between rising O3 pollution and other aspects of climate change, notably drought. Finally, we propose the use of globally modeled O3 data that are available at increasing spatial and temporal resolutions to expand upon the research conducted at the limited number of global O3 -FACE facilities.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Mudança Climática , Produtos Agrícolas/fisiologia , Ozônio/efeitos adversos , Fotossíntese , Agricultura , Poluição do Ar/efeitos adversos , Dióxido de Carbono/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Secas , Variação Genética , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos
2.
Proteins ; 87(11): 931-942, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31162724

RESUMO

Like many Gram-negative pathogens, Shigella rely on a type three secretion system (T3SS) for injection of effector proteins directly into eukaryotic host cells to initiate and sustain infection. Protein secretion through the needle-like type three secretion apparatus (T3SA) requires ATP hydrolysis by the T3SS ATPase Spa47, making it a likely target for in vivo regulation of T3SS activity and an attractive target for small molecule therapeutics against shigellosis. Here, we developed a model of an activated Spa47 homo-hexamer, identifying two distinct regions at each protomer interface that we hypothesized to provide intermolecular interactions supporting Spa47 oligomerization and enzymatic activation. Mutational analysis and a series of high-resolution crystal structures confirm the importance of these residues, as many of the engineered mutants are unable to form oligomers and efficiently hydrolyze ATP in vitro. Furthermore, in vivo evaluation of Shigella virulence phenotype uncovered a strong correlation between T3SS effector protein secretion, host cell membrane disruption, and cellular invasion by the tested mutant strains, suggesting that perturbation of the identified interfacial residues/interactions influences Spa47 activity through preventing oligomer formation, which in turn regulates Shigella virulence. The most impactful mutations are observed within the conserved Site 2 interface where the native residues support oligomerization and likely contribute to a complex hydrogen bonding network that organizes the active site and supports catalysis. The critical reliance on these conserved residues suggests that aspects of T3SS regulation may also be conserved, providing promise for the development of a cross-species therapeutic that broadly targets T3SS ATPase oligomerization and activation.


Assuntos
Adenosina Trifosfatases/metabolismo , Disenteria Bacilar/metabolismo , Shigella flexneri/fisiologia , Sistemas de Secreção Tipo III/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Shigella flexneri/química , Shigella flexneri/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...