Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0277668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36516116

RESUMO

Agroinfiltration is a method used in biopharming to support plant-based biosynthesis of therapeutic proteins such as antibodies and viral antigens involved in vaccines. Major advantages of generating proteins in plants is the low cost, massive scalability and the rapid yield of the technology. Herein, we report the agroinfiltration-based production of glycosylated SARS-CoV-2 Spike receptor-binding domain (RBD) protein. We show that it exhibits high-affinity binding to the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and displays folding similar to antigen produced in mammalian expression systems. Moreover, our plant-expressed RBD was readily detected by IgM, IgA, and IgG antibodies from the serum of SARS-CoV-2 infected and vaccinated individuals. We further demonstrate that binding of plant-expressed RBD to ACE2 is efficiently neutralized by these antibodies. Collectively, these findings demonstrate that recombinant RBD produced via agroinfiltration exhibits suitable biochemical and antigenic features for use in serological and neutralization assays, and in subunit vaccine platforms.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Mamíferos/metabolismo
2.
J Vis Exp ; (179)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35156657

RESUMO

Starch granules (SGs) exhibit different morphologies depending on the plant species, especially in the endosperm of the Poaceae family. Endosperm phenotyping can be used to classify genotypes based on SG morphotype using scanning electron microscopic (SEM) analysis. SGs can be visualized using SEM by slicing through the kernel (pericarp, aleurone layers, and endosperm) and exposing the organellar contents. Current methods require the rice kernel to be embedded in plastic resin and sectioned using a microtome or embedded in a truncated pipette tip and sectioned by hand using a razor blade. The former method requires specialized equipment and is time-consuming, while the latter introduces a new host of problems depending on rice genotype. Chalky rice varieties, particularly, pose a problem for this type of sectioning due to the friable nature of their endosperm tissue. Presented here is a technique for preparing translucent and chalky rice kernel sections for microscopy, requiring only pipette tips and a scalpel blade. Preparing the sections within the confines of a pipette tip prevents rice kernel endosperm from shattering (for translucent or 'vitreous' phenotypes) and crumbling (for chalky phenotypes). Using this technique, endosperm cell patterning and the structure of intact SGs can be observed.


Assuntos
Oryza , Endosperma , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Varredura , Oryza/genética , Fenótipo , Proteínas de Plantas/metabolismo , Amido/metabolismo
3.
Physiol Plant ; 155(3): 281-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25534661

RESUMO

Little is known about the capacity of Cannabis sativa to cold-acclimate and develop freezing tolerance. This study investigates the cold acclimation (CA) capacity of nine C. sativa varieties and the underlying genetic and epigenetic responses. The varieties were divided into three groups based on their contrasting CA capacities by comparing the survival of non-acclimated and cold-acclimated plants in whole-plant freeze tests. In response to the CA treatment, all varieties accumulated soluble sugars but only the varieties with superior capacity for CA could maintain higher levels throughout the treatment. In addition, the varieties that acclimated most efficiently accumulated higher transcript levels of cold-regulated (COR) genes and genes involved in de novo DNA methylation while displaying locus- and variety-specific changes in the levels of H3K9ac, H3K27me3 and methylcytosine (MeC) during CA. Furthermore, these hardy C. sativa varieties displayed significant increases in MeC levels at COR gene loci when deacclimated, suggesting a role for locus-specific DNA methylation in deacclimation. This study uncovers the molecular mechanisms underlying CA in C. sativa and reveals higher levels of complexity regarding how genetic, epigenetic and environmental factors intertwine.


Assuntos
Aclimatação/fisiologia , Cannabis/fisiologia , Cromatina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Aclimatação/genética , Cannabis/genética , Temperatura Baixa , Citosina/metabolismo , Metilação de DNA , Histonas/metabolismo , Lisina/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(32): 11888-93, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071219

RESUMO

To incorporate the far-red light (FR) signal into a strategy for optimizing plant growth, FAR-RED ELONGATED HYPOCOTYL1 (FHY1) mediates the nuclear translocation of the FR photoreceptor phytochrome A (phyA) and facilitates the association of phyA with the promoters of numerous associated genes crucial for the response to environmental stimuli. However, whether FHY1 plays additional roles after FR irradiation remains elusive. Here, through the global identification of FHY1 chromatin association sites through ChIP-seq analysis and by the comparison of FHY1-associated sites with phyA-associated sites, we demonstrated that nuclear FHY1 can either act independently of phyA or act in association with phyA to activate the expression of distinct target genes. We also determined that phyA can act independently of FHY1 in regulating phyA-specific target genes. Furthermore, we determined that the independent FHY1 nuclear pathway is involved in crucial aspects of plant development, as in the case of inhibited seed germination under FR during salt stress. Notably, the differential presence of cis-elements and transcription factors in common and unique FHY1- and/or phyA-associated genes are indicative of the complexity of the independent and coordinated FHY1 and phyA pathways. Our study uncovers previously unidentified aspects of FHY1 function beyond its currently recognized role in phyA-dependent photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Germinação , Luz , Modelos Biológicos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/efeitos da radiação , Fitocromo/genética , Fitocromo/efeitos da radiação , Fitocromo A/genética , Fitocromo A/efeitos da radiação , Plantas Geneticamente Modificadas , Tolerância ao Sal , Transdução de Sinais
5.
Cancer Cell Int ; 10: 8, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20298605

RESUMO

BACKGROUND: The interaction between viral oncoproteins such as Simian virus 40 TAg, adenovirus E1A, and human papilloma virus E7, and the retinoblastoma protein (pRB) occurs through a well characterized peptide sequence, LXCXE, on the viral protein and a well conserved groove in the pocket domain of pRB. Cellular proteins, such as histone deacetylases, also use this mechanism to interact with the retinoblastoma protein to repress transcription at cell cycle regulated genes. For these reasons this region of the pRB pocket domain is thought to play a critical role in growth suppression. RESULTS: In this study, we identify and characterize a tumor derived allele of the retinoblastoma gene (RB1) that possesses a discrete defect in its ability to interact with LXCXE motif containing proteins that compromises proliferative control. To assess the frequency of similar mutations in the RB1 gene in human cancer, we screened blood and tumor samples for similar alleles. We screened almost 700 samples and did not detect additional mutations, indicating that this class of mutation is rare. CONCLUSIONS: Our work provides proof of principal that alleles encoding distinct, partial loss of function mutations in the retinoblastoma gene that specifically lose LXCXE dependent interactions, are found in human cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...