Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 92(3): 523-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582694

RESUMO

Chagasic disease is associated with high morbidity in Latin America. Acute Chagasic myocarditis is consistently found in acute infections, but little is known about its contribution to chronic cardiomyopathy. The aim of the study was to phenotypically characterize two strains of mice with differential Chagas infection susceptibility and correlate strain myocarditis phenotypes with heart tissue gene expression. C57BL/6J and Balb/c mice were injected intraperitoneally with 0 or 150-200 tissue-derived trypomastigotes (Tulahuen strain). Echocardiograms, brain natriuretic peptide, and troponin were measured. Heart tissue was harvested for histopathological analysis and gene expression profiling on microarrays. Genes differently expressed between infected Balb/c and C57BL/6J mice were identified. Echocardiograms showed differences in Balb/c versus C57BL/6J infected mice in heart rate (413 versus 476 beats per minute; P = 0.0001), stroke volume (31.9 ± 9.3 versus 39.2 ± 5.5 µL; P = 0.03), and cardiac output (13.1 ± 3.5 versus 18.7 ± 3.2 µL/min; P = 0.002). Gene expression at 4 weeks analysis showed 32 statistically significant (q value < 0.05) differentially expressed genes between infected Balb/c and C57BL/6J mice that were enriched for genes related to the protein kinase B (AKT) pathway. These specific phenotypic features of cardiac response during acute Chagasic myocarditis may, in part, be related to host AKT network regulation.


Assuntos
Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Contração Miocárdica/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Trypanosoma cruzi
2.
J Mol Cell Cardiol ; 67: 112-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24374140

RESUMO

Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells.


Assuntos
Angiotensina II/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular , Fibroblastos/metabolismo , Fibrose/tratamento farmacológico , Citometria de Fluxo , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Isoformas de Proteínas/farmacologia
3.
J Mol Cell Cardiol ; 63: 175-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23939492

RESUMO

Cardiac hypertrophy is an independent predictor of adverse outcomes in patients with heart failure, and thus represents an attractive target for novel therapeutic intervention. JQ1, a small molecule inhibitor of bromodomain and extraterminal (BET) acetyl-lysine reader proteins, was identified in a high throughput screen designed to discover novel small molecule regulators of cardiomyocyte hypertrophy. JQ1 dose-dependently blocked agonist-dependent hypertrophy of cultured neonatal rat ventricular myocytes (NRVMs) and reversed the prototypical gene program associated with pathological cardiac hypertrophy. JQ1 also blocked left ventricular hypertrophy (LVH) and improved cardiac function in adult mice subjected to transverse aortic constriction (TAC). The BET family consists of BRD2, BRD3, BRD4 and BRDT. BRD4 protein expression was increased during cardiac hypertrophy, and hypertrophic stimuli promoted recruitment of BRD4 to the transcriptional start site (TSS) of the gene encoding atrial natriuretic factor (ANF). Binding of BRD4 to the ANF TSS was associated with increased phosphorylation of local RNA polymerase II. These findings define a novel function for BET proteins as signal-responsive regulators of cardiac hypertrophy, and suggest that small molecule inhibitors of these epigenetic reader proteins have potential as therapeutics for heart failure.


Assuntos
Cardiomegalia/metabolismo , Proteínas de Transporte/metabolismo , Animais , Azepinas/farmacologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Proteínas de Transporte/química , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Ratos , Triazóis/farmacologia
4.
Circ Res ; 110(5): 739-48, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22282194

RESUMO

RATIONALE: Histone deacetylase (HDAC) inhibitors are efficacious in models of hypertension-induced left ventricular heart failure. The consequences of HDAC inhibition in the context of pulmonary hypertension with associated right ventricular cardiac remodeling are poorly understood. OBJECTIVE: This study was performed to assess the utility of selective small-molecule inhibitors of class I HDACs in a preclinical model of pulmonary hypertension. METHODS AND RESULTS: Rats were exposed to hypobaric hypoxia for 3 weeks in the absence or presence of a benzamide HDAC inhibitor, MGCD0103, which selectively inhibits class I HDACs 1, 2, and 3. The compound reduced pulmonary arterial pressure more dramatically than tadalafil, a standard-of-care therapy for human pulmonary hypertension that functions as a vasodilator. MGCD0103 improved pulmonary artery acceleration time and reduced systolic notching of the pulmonary artery flow envelope, which suggests a positive impact of the HDAC inhibitor on pulmonary vascular remodeling and stiffening. Similar results were obtained with an independent class I HDAC-selective inhibitor, MS-275. Reduced pulmonary arterial pressure in MGCD0103-treated animals was associated with blunted pulmonary arterial wall thickening because of suppression of smooth muscle cell proliferation. Right ventricular function was maintained in MGCD0103-treated animals. Although the class I HDAC inhibitor only modestly reduced right ventricular hypertrophy, it had multiple beneficial effects on the right ventricle, which included suppression of pathological gene expression, inhibition of proapoptotic caspase activity, and repression of proinflammatory protein expression. CONCLUSIONS: By targeting distinct pathogenic mechanisms, isoform-selective HDAC inhibitors have potential as novel therapeutics for pulmonary hypertension that will complement vasodilator standards of care.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/efeitos dos fármacos , Hipertensão Pulmonar/prevenção & controle , Músculo Liso Vascular/citologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Músculo Liso Vascular/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...