Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(39): 19867-19877, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817920

RESUMO

Controlling ultrafast material transformations with atomic precision is essential for future nanotechnology. Pulsed laser annealing (LA), inducing extremely rapid and localized phase transitions, is a powerful way to achieve this but requires careful optimization together with the appropriate system design. We present a multiscale LA computational framework that can simulate atom-by-atom the highly out-of-equilibrium kinetics of a material as it interacts with the laser, including effects of structural disorder. By seamlessly coupling a macroscale continuum solver to a nanoscale superlattice kinetic Monte Carlo code, this method overcomes the limits of state-of-the-art continuum-based tools. We exploit it to investigate nontrivial changes in composition, morphology, and quality of laser-annealed SiGe alloys. Validations against experiments and phase-field simulations as well as advanced applications to strained, defected, nanostructured, and confined SiGe are presented, highlighting the importance of a multiscale atomistic-continuum approach. Current applicability and potential generalization routes are finally discussed.

2.
Microsc Microanal ; 29(3): 1124-1136, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749700

RESUMO

Atom probe tomography (APT) is a powerful three-dimensional nanoanalyzing microscopy technique considered key in modern materials science. However, progress in the spatial reconstruction of APT data has been rather limited since the first implementation of the protocol proposed by Bas et al. in 1995. This paper proposes a simple semianalytical approach to reconstruct multilayered structures, i.e., two or more different compounds stacked perpendicular to the analysis direction. Using a field evaporation model, the general dynamic evolution of parameters involved in the reconstruction of this type of structure is estimated. Some experimental reconstructions of different structures through the implementation of this method that dynamically accommodates variations in the tomographic reconstruction parameters are presented. It is shown both experimentally and theoretically that the depth accuracy of reconstructed APT images is improved using this method. The method requires few parameters in order to be easily usable and substantially improves atom probe tomographic reconstructions of multilayered structures.

3.
Nanoscale ; 15(16): 7438-7449, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37013461

RESUMO

We present the experimental realization of plasmonic hyperdoped Si nanocrystals embedded in silica via a combination of sequential low energy ion implantation and rapid thermal annealing. We show that phosphorus dopants are incorporated into the nanocrystal cores at concentrations up to six times higher than P solid solubility in bulk Si by combining 3D mapping with atom probe tomography and analytical transmission electron microscopy. We shed light on the origin of nanocrystal growth at high P doses, which we attribute to Si recoiling atoms generated in the matrix by P implantation, which likely increase Si diffusivity and feed the Si nanocrystals. We show that dopant activation enables partial nanocrystal surface passivation that can be completed by forming gas annealing. Such surface passivation is a critical step in the formation of plasmon resonance, especially for small nanocrystals. We find that the activation rate in these small doped Si nanocrystals is the same as in bulk Si under the same doping conditions.

4.
Nanoscale ; 13(46): 19617-19625, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34816268

RESUMO

This work reports on the influence of phosphorous atoms on the phase separation process and optical properties of silicon nanocrystals (Si-NCs) embedded in phosphorus doped SiO/SiO2 multilayers. Doped SiO/SiO2 multilayers with different P contents have been prepared by co-evaporation and subsequently annealed at different temperatures up to 1100 °C. The sample structure and the localization of P atoms were both studied at the nanoscale by scanning transmission electron microscopy and atom probe tomography. It is found that P incorporation modifies the mechanism of Si-NC growth by promoting the phase separation during the post-growth-annealing step, leading to nanocrystal formation at lower annealing temperatures as compared to undoped Si-NCs. Hence, the maximum of Si-NC related photoluminescence (PL) intensity is achieved for annealing temperatures lower than 900 °C. It is also demonstrated that the Si-NCs mean size increases in the presence of P, which is accompanied by a redshift of the Si-NC related emission. The influence of the phosphorus content on the PL properties is studied using both room temperature and low temperature measurements. It is shown that for a P content lower than about 0.1 at%, P atoms contribute to significantly improve the PL intensity. This effect is attributed to the P-induced-reduction of the number of non-radiative defects at the interface between Si-NCs and SiO2 matrix, which is discussed in comparison with hydrogen passivation of Si-NCs. In contrast, for increasing P contents, the PL intensity strongly decreases, which is explained by the growth of Si-NCs reaching sizes that are too large to ensure quantum confinement and to the localization of P atoms inside Si-NCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...