Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 219: 113435, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892272

RESUMO

The eukaryotic translation initiation factor 4E (eIF4E) is the master regulator of cap-dependent protein synthesis. Overexpression of eIF4E is implicated in diseases such as cancer, where dysregulation of oncogenic protein translation is frequently observed. eIF4E has been an attractive target for cancer treatment. Here we report a high-resolution X-ray crystal structure of eIF4E in complex with a novel inhibitor (i4EG-BiP) that targets an internal binding site, in contrast to the previously described inhibitor, 4EGI-1, which binds to the surface. We demonstrate that i4EG-BiP is able to displace the scaffold protein eIF4G and inhibit the proliferation of cancer cells. We provide insights into how i4EG-BiP is able to inhibit cap-dependent translation by increasing the eIF4E-4E-BP1 interaction while diminishing the interaction of eIF4E with eIF4G. Leveraging structural details, we designed proteolysis targeted chimeras (PROTACs) derived from 4EGI-1 and i4EG-BiP and characterized these on biochemical and cellular levels. We were able to design PROTACs capable of binding eIF4E and successfully engaging Cereblon, which targets proteins for proteolysis. However, these initial PROTACs did not successfully stimulate degradation of eIF4E, possibly due to competitive effects from 4E-BP1 binding. Our results highlight challenges of targeted proteasomal degradation of eIF4E that must be addressed by future efforts.


Assuntos
Compostos de Bifenilo/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Sítios de Ligação , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Cinética , Simulação de Acoplamento Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
2.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107819

RESUMO

Brown adipose tissue is a metabolically beneficial organ capable of dissipating chemical energy into heat, thereby increasing energy expenditure. Here, we identify Dot1l, the only known H3K79 methyltransferase, as an interacting partner of Zc3h10 that transcriptionally activates the Ucp1 promoter and other BAT genes. Through a direct interaction, Dot1l is recruited by Zc3h10 to the promoter regions of thermogenic genes to function as a coactivator by methylating H3K79. We also show that Dot1l is induced during brown fat cell differentiation and by cold exposure and that Dot1l and its H3K79 methyltransferase activity is required for thermogenic gene program. Furthermore, we demonstrate that Dot1l ablation in mice using Ucp1-Cre prevents activation of Ucp1 and other target genes to reduce thermogenic capacity and energy expenditure, promoting adiposity. Hence, Dot1l plays a critical role in the thermogenic program and may present as a future target for obesity therapeutics.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Metabolismo Energético , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Metilação , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Desacopladora 1/genética
3.
Cell Rep ; 29(9): 2621-2633.e4, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775033

RESUMO

Brown adipose tissue harbors UCP1 to dissipate chemical energy as heat. However, the transcriptional network that governs the thermogenic gene program is incompletely understood. Zc3h10, a CCCH-type zinc finger protein, has recently been reported to bind RNA. However, we report here that Zc3h10 functions as a transcription factor to activate UCP1 not through the enhancer region, but by binding to a far upstream region of the UCP1 promoter. Upon sympathetic stimulation, Zc3h10 is phosphorylated at S126 by p38 mitogen-activated protein kinase (MAPK) to increase binding to the distal region of the UCP1 promoter. Zc3h10, as well as mutant Zc3h10, which cannot bind RNA, enhances thermogenic capacity and energy expenditure, protecting mice from diet-induced obesity. Conversely, Zc3h10 ablation in UCP1+ cells in mice impairs thermogenic capacity and lowers oxygen consumption, leading to weight gain. Hence, Zc3h10 plays a critical role in the thermogenic gene program and may present future targets for obesity therapeutics.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas de Transporte/genética , Termogênese/genética , Fatores de Transcrição/metabolismo , Animais , Humanos , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...