Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cold Spring Harb Mol Case Stud ; 2(3): a000737, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27148587

RESUMO

Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.1000C>T (p.R334C), associated with congenital birth defects in two patients from a consanguineous family. Patients presented with carbohydrate-deficient transferrin, tall stature, obesity, macrocephaly, and maloccluded teeth. The parents were healthy heterozygous carriers for both mutations and an unaffected sibling with tall stature carried the heterozygous mutation in SEC23A only. Mutations in SEC23A are responsible for craniolenticosultura dysplasia (CLSD). CLSD patients are short, have late-closing fontanels, and have reduced procollagen (pro-COL1A1) secretion because of abnormal pro-COL1A1 retention in the endoplasmic reticulum (ER). The mutation we identified in MAN1B1 was previously associated with reduced MAN1B1 protein and congenital disorders of glycosylation (CDG). CDG patients are also short, are obese, and have abnormal glycan remodeling. Molecular analysis of fibroblasts from the family revealed normal levels of SEC23A in all cells and reduced levels of MAN1B1 in cells with heterozygous or homozygous mutations in SEC23A and MAN1B1. Secretion of pro-COL1A1 was increased in fibroblasts from the siblings and patients, and pro-COL1A1 was retained in Golgi of heterozygous and homozygous mutant cells, although intracellular pro-COL1A1 was increased in patient fibroblasts only. We postulate that increased pro-COL1A1 secretion is responsible for tall stature in these patients and an unaffected sibling, and not previously discovered in patients with mutations in either SEC23A or MAN1B1. The patients in this study share biochemical and cellular characteristics consistent with mutations in MAN1B1 and SEC23A, indicating a digenic disease.

2.
Orphanet J Rare Dis ; 11: 8, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26809617

RESUMO

BACKGROUND: Late-onset Pompe disease (LOPD) is a rare treatable lysosomal storage disorder characterized by progressive lysosomal glycogen accumulation and muscle weakness, with often a limb-girdle pattern. Despite published guidelines, testing for LOPD is often overlooked or delayed in adults, owing to its low frequency compared to other muscle disorders with similar muscle patterns. Next-generation sequencing has the capability to test concurrently for several muscle disorders. This could potentially lead to increased diagnosis of LOPD, disorders with non-specific muscle weakness or atypical patients. METHODS: We developed a gene panel to further study its clinical utility in a cohort of patients with suspected muscle disorders. We designed a gene panel to analyze the coding sequences and splice site junctions of GAA causing LOPD, along with 77 other genes causing muscle disorders with overlapping phenotypes. RESULTS: At a median coverage of ~200X (sequences per base), all GAA exons were successfully covered with >20X and only 0.3 % of exons across all genes were <20X. The panel showed an excellent sensitivity (100 %) and specificity (98 %) across all selected genes, using known variations in Pompe patients and controls. We determined its clinical utility by analyzing 34 patients with suspected muscle disorders of undetermined etiology and various muscle patterns, who were referred or followed in neuromuscular and genetics clinics. A putative diagnosis was found in up to 32 % of patients. The gene panel was instrumental in reaching a diagnosis in atypical patients, including one LOPD case. Acid alpha-glucosidase activity was used to confirm the molecular results in all patients. CONCLUSION: This work highlights the high clinical utility of gene panels in patients with suspected muscle disorders and its potential to facilitate the diagnosis of patients showing non-specific muscle weakness or atypical phenotypes. We propose that gene panels should be used as a first-tier test in patients with suspected muscle disorders of undetermined etiology, which could further increase overall diagnosis of muscle conditions, and potentially reduce diagnostic delay. Further studies are necessary to determine the impact of first-tier gene panels on diagnostic delay and on treatment outcome for LOPD.


Assuntos
Doença de Depósito de Glicogênio Tipo II/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Musculares/diagnóstico , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem
3.
Mol Genet Metab ; 110(1-2): 86-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23707710

RESUMO

Isolated methylmalonic aciduria (MMA) results either from a defect in the mitochondrial enzyme methylmalonylCoA mutase (MCM), or in the intracellular conversion of vitamin B12 (cobalamin) into its active coenzyme adenosylcobalamin (AdoCbl). Mutations in the MMAB gene affect the function of the enzyme ATP:cob(I)alamin adenosyltransferase (ATR) and the production of AdoCbl. Measurement of MCM function in cultured patient fibroblasts, followed by somatic cell complementation analysis in cases where MCM function is decreased, has classically been used to diagnose the cblB cobalamin disorder. A patient with persistent MMA, who could not be diagnosed using traditional somatic cell studies, was subsequently shown by sequencing in a clinical laboratory to contain two variants in the MMAB gene. This observation brings into question whether somatic cell studies have failed to diagnose other cblB patients with mild cellular phenotypes. A high resolution melting analysis (HRMA) assay was developed for the MMAB gene. It was used to scan 96 reference samples and two cohorts of patients: 42 patients diagnosed with cblB by complementation studies; and 181 patients with undiagnosed MMA. MMAB mutations, including one novel nonsense mutation (c.12 C>A [p.C4X]), were identified in all members of the cblB cohort. Four patients with undiagnosed MMA, including the index case described above, were found to contain variants in the MMAB gene: c.185C>T (p.T62M), c.394T>C (p.C132R), c.398C>T (p.S133F), c.521C>T (p.S174L), c.572G>A (p.R191Q). Only the index case was found to have two variants, suggesting that somatic cell studies diagnose almost all cblB patients.


Assuntos
Alquil e Aril Transferases/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Cobamidas/metabolismo , Vitamina B 12/metabolismo , Alquil e Aril Transferases/química , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Cobamidas/genética , Feminino , Humanos , Masculino , Metilmalonil-CoA Mutase/genética , Mutação , Desnaturação de Ácido Nucleico/genética , Vitamina B 12/genética
4.
Mol Genet Metab ; 107(3): 363-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23026888

RESUMO

The gene product of MMAA is required for the intracellular metabolism of cobalamin (Cbl). Mutations in this gene lead to the cblA class of disorders, characterized by isolated methylmalonic aciduria. We have been concerned that somatic cell methods of diagnosis may miss patients with mild cellular phenotypes. A high resolution melting analysis (HRMA) assay was developed to rapidly scan the coding exons and flanking intronic regions of the MMAA gene for variants. DNA was scanned by HRMA from 96 unaffected reference individuals, 72 cblA patients confirmed by complementation, and 181 patients with isolated elevated methylmalonic acid, who could not be diagnosed using complementation analysis. Suspected variants were confirmed by Sanger sequencing. In the cblA cohort, HRMA correctly identified all previously known mutations as well as an additional 22 variants, 10 of which had not been previously reported. Novel variants included one duplication (c.551dupG, p.C187LfsX3), one deletion (c.387delC, p.Y129YfsX13), one splice site mutation (c.440-2A>G, splice site), 4 missense mutations (c.748G>A, p.E520K; c.820G>A, p.G274S; c.627G>T, p.R209S; c.826A>G, p.K276E), and 3 nonsense mutations (c.960G>A, p.W320X; c.1075C>T, p.E359X; c.1084C>T, p.Q362X). All novel missense variants affect highly conserved residues and are predicted to be damaging. Scanning of MMAA in the 181 undiagnosed samples revealed a single novel heterozygous missense change (c.821G>A, p.G274D).


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Análise Mutacional de DNA/métodos , Proteínas de Transporte da Membrana Mitocondrial/genética , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/urina , Estudos de Casos e Controles , Éxons , Humanos , Íntrons , Ácido Metilmalônico/sangue , Ácido Metilmalônico/urina , Mutação , Desnaturação de Ácido Nucleico , Vitamina B 12/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...