Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 707096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456916

RESUMO

Aggregatibacter actinomycetemcomitans is a gram-negative facultative anaerobe and an opportunistic oral pathogen, strongly associated with periodontitis and other inflammatory diseases. Periodontitis is a chronic inflammation of the periodontium resulting from the inflammatory response of the host towards the dysbiotic microbial community present at the gingival crevice. Previously, our group identified catecholamines and iron as the signals that activate the QseBC two-component system in A. actinomycetemcomitans, necessary for the organism to acquire iron as a nutrient to survive in the anaerobic environment. However, the source of catecholamines has not been identified. It has been reported that mouse neutrophils can release catecholamines. In periodontitis, large infiltration of neutrophils is found at the subgingival pocket; hence, we wanted to test the hypothesis that A. actinomycetemcomitans exploits human neutrophils as a source for catecholamines. In the present study, we showed that human neutrophils synthesize, store, and release epinephrine, one of the three main types of catecholamines. Human neutrophil challenge with A. actinomycetemcomitans induced exocytosis of neutrophil granule subtypes: secretory vesicles, specific granules, gelatinase granules, and azurophilic granules. In addition, by selectively inhibiting granule exocytosis, we present the first evidence that epinephrine is stored in azurophilic granules. Using QseC mutants, we showed that the periplasmic domain of the QseC sensor kinase is required for the interaction between A. actinomycetemcomitans and epinephrine. Finally, epinephrine-containing supernatants collected from human neutrophils promoted A. actinomycetemcomitans growth and induced the expression of the qseBC operon under anaerobic conditions. Based on our findings, we propose that A. actinomycetemcomitans promotes azurophilic granule exocytosis by neutrophils as an epinephrine source to promote bacterial survival.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Epinefrina/metabolismo , Neutrófilos/metabolismo , Infecções por Pasteurellaceae/metabolismo , Periodontite/microbiologia , Sobrevivência Celular/fisiologia , Humanos
2.
Pharmaceutics ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882864

RESUMO

Porphyromonas gingivalis adherence to Streptococcus gordonii is a crucial initial event that facilitates the colonization of P. gingivalis, a key pathogen in periodontal disease. As such, blocking these early interactions may present a potential avenue to limit P. gingivalis colonization. Nanoparticles encapsulating a synthetic peptide BAR (BAR-encapsulated NPs) inhibit P. gingivalis/S. gordonii biofilm formation 1.8-fold more potently relative to free BAR. However, BAR-encapsulated NPs, like many orally delivered formulations, may benefit from a strategy that improves their retention in an open flow environment. Here, we sought to enhance the efficacy of BAR-encapsulated NPs by modifying their surfaces with coaggregation factor A (CafA), a fimbrial protein expressed by the early colonizer, Actinomyces oris. We demonstrate that the targeting moiety, CafA, enhances NP binding and exhibits specificity of adherence to S. gordonii, relative to other oral bacterial species. Furthermore, CafA-modified NPs release inhibitory concentrations of BAR for 12 h, a time frame relevant to oral dosage form delivery. Lastly, CafA-modified NPs potently inhibit P. gingivalis/S. gordonii biofilm formation for up to 12 h and are non-toxic at therapeutically-relevant concentrations. These results suggest that CafA-modified NPs represent a novel and efficacious delivery vehicle for localized, targeted delivery of BAR to P. gingivalis preferred niches.

3.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816725

RESUMO

Porphyromonas gingivalis is one of the primary causative agents of periodontal disease and initially colonizes the oral cavity by adhering to commensal streptococci. Adherence requires the interaction of a minor fimbrial protein (Mfa1) of P. gingivalis with streptococcal antigen I/II (AgI/II). Our previous work identified an AgI/II peptide that potently inhibited adherence and significantly reduced P. gingivalis virulence in vivo, suggesting that this interaction represents a potential target for drug discovery. To develop targeted small-molecule inhibitors of this protein-protein interaction, we performed a virtual screen of the ZINC databases to identify compounds that exhibit structural similarity with the two functional motifs (NITVK and VQDLL) of the AgI/II peptide. Thirty three compounds were tested for in vitro inhibition of P. gingivalis adherence and the three most potent compounds, namely, N7, N17, and V8, were selected for further analysis. The in vivo efficacy of these compounds was evaluated in a murine model of periodontitis. Treatment of mice with each of the compounds significantly reduced maxillary alveolar bone resorption in infected animals. Finally, a series of cytotoxicity tests were performed against human and murine cell lines. Compounds N17 and V8 exhibited no significant cytotoxic activity toward any of the cell lines, whereas compound N7 was cytotoxic at the highest concentrations that were tested (20 and 40 µM). These results identify compounds N17 and V8 as potential lead compounds that will facilitate the design of more potent therapeutic agents that may function to limit or prevent P. gingivalis colonization of the oral cavity.


Assuntos
Periodontite , Porphyromonas gingivalis , Animais , Aderência Bacteriana , Biofilmes , Camundongos , Periodontite/tratamento farmacológico , Streptococcus
4.
Mol Oral Microbiol ; 35(2): 66-77, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31994329

RESUMO

Porphyromonas gingivalis is associated with chronic periodontitis and may initially colonize the oral cavity by adhering to streptococci. Adhesion to streptococci is driven by interaction of the minor fimbrial antigen (Mfa1) with streptococcal antigen I/II. We identified the region of antigen I/II required for this interaction and developed small molecule mimetics that inhibited P. gingivalis adherence. However, the functional motifs of Mfa1 involved in the interaction with antigen I/II remain uncharacterized. A series of N- and C-terminal peptide fragments of Mfa1 were expressed and tested for inhibition of P. gingivalis adherence to S. gordonii. This approach identified residues 225-400 of Mfa1 as essential for P. gingivalis adherence. Using the three-dimensional structure of Mfa1, a putative binding cleft was identified using SiteMap and five small molecule mimetics could dock in this site. Site-specific mutation of residues in the predicted cleft, including R240A, W275A, D321A and A357P inhibited the interaction of Mfa1 with streptococci, whereas mutation of residues not in the predicted cleft (V238A, I252F and ΔK253) had no effect. Complementation of an Mfa1-deficient P. gingivalis strain with wild-type mfa1 restored adherence to streptococci, whereas complementation with full-length mfa1 containing the R240A or A357P mutations did not restore adherence. The mutations did not affect polymerization of Mfa1, suggesting that the complemented strains produced intact minor fimbriae. These results identified specific residues and structural motifs required for the Mfa1-antigen I/II interaction and will facilitate the design of small molecule therapeutics to prevent P. gingivalis colonization of the oral cavity.


Assuntos
Porphyromonas gingivalis , Adesinas Bacterianas , Aderência Bacteriana , Biofilmes , Proteínas de Fímbrias , Porphyromonas gingivalis/genética
5.
Mol Oral Microbiol ; 34(5): 169-182, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31389653

RESUMO

The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.


Assuntos
Antibacterianos , Biofilmes , Microbiota , Peptídeos , Bactérias , Biofilmes/efeitos dos fármacos , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Humanos , Testes de Sensibilidade Microbiana , Boca/microbiologia , Peptídeos/uso terapêutico , Periodontite/microbiologia , Periodontite/prevenção & controle
6.
Medchemcomm ; 10(2): 268-279, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30881614

RESUMO

Several 'second-generation' click inhibitors of the multi-species biofilm propagated by the adherence of the oral pathogen Porphyromonas gingivalis to Streptococcus gordonii were synthesized and evaluated. The design of the structures was based on the results obtained with the first-generation diphenyloxazole 'click' inhibitors which bear suitable hydrophobic and polar groups within a dual scaffold molecule bearing a 1,2,3-triazole spacer. The structures of the synthetic targets reported herein now consist of a triazolyl(phenylsulfonylmethyl) and a triazolyl(phenylsulfinylmethyl) spacer which joins a 4,5-diphenyloxazole with both phenyl rings bearing lipophilic substituents. The triazolyl "linker" group is formed by a click reaction between the 4-azido(phenylsulfonyl/sulfinylmethyl) oxazoles and acetylenic components having aryl groups bearing hydrophobic substituents. The 1,3,5-trisubstituted-2,4,6-triazine scaffold of the most active click compounds were modeled after the structural motif termed the VXXLL nuclear receptor (NR) box. When substituted at the 3- and 5-positions with 2- and 4-fluorophenylamino and N,N-diethylamino units, the candidates bearing the 1,3,5-trisubstituted-2,4,6-triazine scaffold formed a substantial subset of the second-generation click candidates. Four of the click products, compounds 95, 111, 115 and 122 showed inhibition of the adherence of P. gingivalis to S. gordonii with an IC50 range of 2.3-4.3 µM and only 111 exhibited cytotoxic activity against telomerase immortalized gingival keratinocytes at 60 µM. These results suggest that compounds 95, 115, 122, and possibly 111 represent the most suitable compounds to evaluate for activity in vivo.

7.
J Control Release ; 297: 3-13, 2019 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-30690103

RESUMO

The interaction of the periodontal pathogen Porphyromonas gingivalis (Pg) with commensal streptococci promotes Pg colonization of the oral cavity. Previously, we demonstrated that a peptide (BAR) derived from Streptococcus gordonii (Sg) potently inhibited adherence of Pg to streptococci and reduced Pg virulence in a mouse model of periodontitis. Thus, BAR may represent a novel therapeutic to control periodontitis by preventing Pg colonization of the oral cavity. However, while BAR inhibited the initial formation of Pg/Sg biofilms, much higher concentrations of peptide were required to disrupt an established Pg/Sg biofilm. To improve the activity of the peptide, poly(lactic-co-glycolic acid) (PLGA) nanoparticles were surface-modified with BAR and shown to more potently disrupt Pg/Sg biofilms relative to an equimolar amount of free peptide. The goal of this work was to determine the in vivo efficacy of BAR-modified NPs (BNPs) and to assess the toxicity of BNPs against human gingival epithelial cells. In vivo efficacy of BNPs was assessed using a murine model of periodontitis by measuring alveolar bone resorption and gingival IL-17 expression as outcomes of Pg-induced inflammation. Infection of mice with Pg and Sg resulted in a significant increase in alveolar bone loss and gingival IL-17 expression over sham-infected animals. Treatment of Pg/Sg infected mice with BNPs reduced bone loss and IL-17 expression almost to the levels of sham-infected mice and to a greater extent than treatment with an equimolar amount of free BAR. The cytotoxicity of the maximum concentration of BNPs and free BAR used in in vitro and in vivo studies (1.3 and 3.4 µM), was evaluated in telomerase immortalized gingival keratinocytes (TIGKs) by measuring cell viability, cell lysis and apoptosis. BNPs were also tested for hemolytic activity against sheep erythrocytes. TIGKs treated with BNPs or free BAR demonstrated >90% viability and no significant lysis or apoptosis relative to untreated cells. In addition, neither BNPs nor free BAR exhibited hemolytic activity. In summary, BNPs were non-toxic within the evaluated concentration range of 1.3-3.4 µM and provided more efficacious protection against Pg-induced inflammation in vivo, highlighting the potential of BNPs as a biocompatible platform for translatable oral biofilm applications.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Nanocápsulas/química , Peptídeos/química , Periodontite/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Perda do Osso Alveolar/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Gengiva/citologia , Humanos , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Boca/efeitos dos fármacos , Peptídeos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Propriedades de Superfície , Resultado do Tratamento
8.
Front Chem ; 7: 926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039149

RESUMO

Active agents targeting key bacterial interactions that initiate biofilm formation in the oral cavity, may alter periodontitis progression; however, to date, specifically-targeted prophylactic and treatment strategies have been limited. Previously we developed a peptide, BAR (SspB Adherence Region), that inhibits oral P. gingivalis/S. gordonii biofilm formation in vitro and in vivo, and BAR nanoparticles that increase BAR effectiveness via multivalency and prolonged delivery. However, limited BAR loading and nanoparticle retention in the oral cavity can result in inadequate release and efficaciousness. Given this, an effective delivery platform that can release concentrations of BAR suitable for twice-daily applications, may offer an alternative that enhances loading, ease of administration, and retention in the oral cavity. With this in mind, the study objectives were to develop and characterize a rapid-release platform, composed of polymeric electrospun fibers (EFs) that encapsulate BAR, and to evaluate fiber safety and functionality against P. gingivalis/S. gordonii biofilms in vitro. Poly(lactic-co-glycolic acid) (PLGA), poly(L-lactic acid) (PLLA), and polycaprolactone (PCL) were electrospun alone or blended with polyethylene oxide (PEO), to provide high BAR loading and rapid-release. The most promising formulation, 10:90 PLGA:PEO EFs, provided 95% BAR release after 4 h, dose-dependent inhibition of biofilm formation (IC50 = 1.3 µM), disruption of established dual-species biofilms (IC50 = 2 µM), and maintained high cell viability. These results suggest that BAR-incorporated EFs may provide a safe and specifically-targeted rapid-release platform to inhibit and disrupt dual-species biofilms, that we envision may be applied twice-daily to exert prophylactic effect in the oral cavity.

9.
J Nanobiotechnology ; 16(1): 69, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219060

RESUMO

BACKGROUND: Porphyromonas gingivalis adherence to oral streptococci is a key point in the pathogenesis of periodontal diseases (Honda in Cell Host Microbe 10:423-425, 2011). Previous work in our groups has shown that a region of the streptococcal antigen denoted BAR (SspB Adherence Region) inhibits P. gingivalis/S. gordonii interaction and biofilm formation both in vitro and in a mouse model of periodontitis (Daep et al. in Infect Immun 74:5756-5762, 2006; Daep et al. in Infect immun 76:3273-3280, 2008; Daep et al. in Infect Immun 79:67-74, 2011). However, high localized concentration and prolonged exposure are needed for BAR to be an effective therapeutic in the oral cavity. METHODS: To address these challenges, we fabricated poly(lactic-co-glycolic acid) (PLGA) and methoxy-polyethylene glycol PLGA (mPEG-PLGA) nanoparticles (NPs) that encapsulate BAR peptide, and assessed the potency of BAR-encapsulated NPs to inhibit and disrupt in vitro two-species biofilms. In addition, the kinetics of BAR-encapsulated NPs were compared after different durations of exposure in a two-species biofilm model, against previously evaluated BAR-modified NPs and free BAR. RESULTS: BAR-encapsulated PLGA and mPEG-PLGA NPs potently inhibited biofilm formation (IC50 = 0.7 µM) and also disrupted established biofilms (IC50 = 1.3 µM) in a dose-dependent manner. In addition, BAR released during the first 2 h of administration potently inhibits biofilm formation, while a longer duration of 3 h is required to disrupt pre-existing biofilms. CONCLUSIONS: These results suggest that BAR-encapsulated NPs provide a potent platform to inhibit (prevent) and disrupt (treat) P. gingivalis/S. gordonii biofilms, relative to free BAR.


Assuntos
Antibacterianos/farmacologia , Antígenos de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/química , Nanopartículas/química , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus gordonii/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/imunologia , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Aderência Bacteriana/efeitos dos fármacos , Infecções por Bacteroidaceae/prevenção & controle , Humanos , Ácido Láctico/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porphyromonas gingivalis/fisiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus/imunologia , Streptococcus gordonii/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-29760142

RESUMO

The interaction of the periodontal pathogen Porphyromonas gingivalis with oral streptococci is important for initial colonization of the oral cavity by P. gingivalis and is mediated by a discrete motif of the streptococcal antigen I/II protein. A synthetic peptide encompassing this motif functions as a potent inhibitor of P. gingivalis adherence, but the use of peptides as topically applied therapeutic agents in the oral cavity has limitations arising from the relatively high cost of peptide synthesis and their susceptibility to degradation by proteases expressed by oral organisms. In this study, we demonstrate the in vitro and in vivo activity of five small-molecule mimetic compounds of the streptococcal peptide. Using a three-species biofilm model, all five compounds were shown to effectively inhibit the incorporation of P. gingivalis into in vitro biofilms and exhibited 50% inhibitory concentrations (IC50s) of 10 to 20 µM. Four of the five compounds also significantly reduced maxillary alveolar bone resorption induced by P. gingivalis infection in a mouse model of periodontitis. All of the compounds were nontoxic toward a human telomerase immortalized gingival keratinocyte cell line. Three compounds exhibited slight toxicity against the murine macrophage J774A.1 cell line at the highest concentration tested. Compound PCP-III-201 was nontoxic to both cell lines and the most potent inhibitor of P. gingivalis virulence and thus may represent a novel potential therapeutic agent that targets P. gingivalis by preventing its colonization of the oral cavity.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Boca/microbiologia , Peptidomiméticos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/crescimento & desenvolvimento , Streptococcus/metabolismo , Animais , Antígenos de Bactérias/genética , Biofilmes/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Linhagem Celular , Queratinócitos , Macrófagos , Camundongos , Testes de Sensibilidade Microbiana , Streptococcus/genética
11.
Int J Nanomedicine ; 12: 4553-4562, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790818

RESUMO

PURPOSE: The interaction of Porphyromonas gingivalis with commensal streptococci promotes P. gingivalis colonization of the oral cavity. We previously showed that a synthetic peptide (BAR) derived from Streptococcus gordonii potently inhibited the formation of P. gingivalis/S. gordonii biofilms (IC50 =1.3 µM) and reduced P. gingivalis virulence in a mouse model of periodontitis. Thus, BAR represents a novel therapeutic to control periodontitis by limiting P. gingivalis colonization of the oral cavity. Here, we sought to develop drug-delivery vehicles for potential use in the oral cavity that comprise BAR-modified poly(lactic-co-glycolic)acid (PLGA) nanoparticles (NPs). METHODS: PLGA-NPs were initially modified with palmitylated avidin and subsequently conjugated with biotinylated BAR. The extent of BAR modification was quantified using a fluorescent-labeled peptide. Inhibition of P. gingivalis adherence to S. gordonii by BAR-modified NPs was compared with free peptide using a two-species biofilm model. RESULTS: BAR-modified NPs exhibited an average size of 99±29 nm and a more positive surface charge than unmodified NPs (zeta potentials of -7 mV and -25 mV, respectively). Binding saturation occurred when 37 nmol BAR/mg of avidin-NPs was used, which resulted in a payload of 7.42 nmol BAR/mg NPs. BAR-modified NPs bound to P. gingivalis in a dose-dependent manner and more potently inhibited P. gingivalis/S. gordonii adherence and biofilm formation relative to an equimolar amount of free peptide (IC50 of 0.2 µM versus 1.3 µM). BAR-modified NPs also disrupted the preformed P. gingivalis/S. gordonii biofilms more effectively than free peptide. Finally, we demonstrate that BAR-modified NPs promoted multivalent association with P. gingivalis, providing an explanation for the increased effectiveness of NPs. CONCLUSION: These results indicate that BAR-modified NPs deliver a higher local dose of peptide and may represent a more effective therapeutic approach to limit P. gingivalis colonization of the oral cavity compared to treatment with formulations of free peptide.


Assuntos
Antibacterianos/farmacologia , Nanopartículas/química , Peptídeos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus gordonii/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/química , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/química , Nanopartículas/administração & dosagem , Peptídeos/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porphyromonas gingivalis/fisiologia , Streptococcus gordonii/efeitos dos fármacos
12.
Sci Rep ; 6: 34477, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708338

RESUMO

Misfolded alpha-synuclein (AS) and other neurodegenerative disorder proteins display prion-like transmission of protein aggregation. Factors responsible for the initiation of AS aggregation are unknown. To evaluate the role of amyloid proteins made by the microbiota we exposed aged rats and transgenic C. elegans to E. coli producing the extracellular bacterial amyloid protein curli. Rats exposed to curli-producing bacteria displayed increased neuronal AS deposition in both gut and brain and enhanced microgliosis and astrogliosis compared to rats exposed to either mutant bacteria unable to synthesize curli, or to vehicle alone. Animals exposed to curli producing bacteria also had more expression of TLR2, IL-6 and TNF in the brain than the other two groups. There were no differences among the rat groups in survival, body weight, inflammation in the mouth, retina, kidneys or gut epithelia, and circulating cytokine levels. AS-expressing C. elegans fed on curli-producing bacteria also had enhanced AS aggregation. These results suggest that bacterial amyloid functions as a trigger to initiate AS aggregation through cross-seeding and also primes responses of the innate immune system.


Assuntos
Amiloide/farmacologia , Proteínas de Bactérias/farmacologia , Caenorhabditis elegans/metabolismo , Proteínas de Escherichia coli/farmacologia , Escherichia coli , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Endogâmicos F344
13.
Bioorg Med Chem ; 24(21): 5410-5417, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647373

RESUMO

The development and use of small-molecule inhibitors of the adherence of Porphyromonas gingivalis to oral streptococci represents a potential therapy for the treatment of periodontal disease as these organisms work in tandem to colonize the oral cavity. Earlier work from these laboratories demonstrated that a small synthetic peptide was an effective inhibitor of the interaction between P. gingivalis and Streptococcus gordonii and that a small-molecule peptidomimetic would provide a more stable, less expensive and more effective inhibitor. An array of 2-(azidomethyl)- and 2-(azidophenyl)-4,5-diaryloxazoles having a full range of hydrophobic groups were prepared and reacted with substituted arylacetylenes to afford the corresponding 'click' products. The title compounds were evaluated for their ability to inhibit P. gingivalis' adherence to oral streptococci and several were found to be inhibitory in the range of (IC50) 5.3-67µM.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Streptococcus gordonii/efeitos dos fármacos , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
14.
Tetrahedron Lett ; 56(23): 3039-3041, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26120210

RESUMO

New routes to 2, 4, 5-trisubstituted oxazoles were established whereby the substitution pattern was established by the structure of the starting nonsymmetrical acyloins. 2-Chloromethyl-4, 5-disubstituted oxazoles were prepared by refinements of an earlier described process whereby chloroacetyl esters of symmetrical and non-symmetrical acyloins were cyclized using an ammonium acetate/acetic acid protocol. After substitution is effected, the azide moiety is then installed by substitution under mild conditions. While dibrominated and iodinated phenyloxazoles are required for further synthetic elaboration, the cyclization reaction was found to be very sensitive to the relative positions of the halogens in the starting materials.

15.
Microbiology (Reading) ; 160(Pt 12): 2583-2594, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223341

RESUMO

The QseBC two-component system plays a pivotal role in regulating virulence and biofilm growth of the oral pathogen Aggregatibacter actinomycetemcomitans. We previously showed that QseBC autoregulates the ygiW-qseBC operon. In this study, we characterized the promoter that drives ygiW-qseBC expression. Using lacZ transcriptional fusion constructs and 5'-rapid amplification of cDNA ends, we showed that ygiW-qseBC expression is driven by a promoter that initiates transcription 53 bases upstream of ygiW and identified putative cis-acting promoter elements, whose function was confirmed using site-specific mutagenesis. Using electrophoretic mobility shift assays, two trans-acting proteins were shown to interact with the ygiW-qseBC promoter. The QseB response regulator bound to probes containing the direct repeat sequence CTTAA-N6-CTTAA, where the CTTAA repeats flank the -35 element of the promoter. The ygiW-qseBC expression could not be detected in A. actinomycetemcomitans ΔqseB or ΔqseBC strains, but was restored to WT levels in the ΔqseBC mutant when complemented by single copy chromosomal insertion of qseBC. Interestingly, qseB partially complemented the ΔqseBC strain, suggesting that QseB could be activated in the absence of QseC. QseB activation required its phosphorylation since complementation did not occur using qseB(pho-), encoding a protein with the active site aspartate substituted with alanine. These results suggest that QseB is a strong positive regulator of ygiW-qseBC expression. In addition, integration host factor (IHF) bound to two sites in the promoter region and an additional site near the 5' end of the ygiW ORF. The expression of ygiW-qseBC was increased by twofold in ΔihfA and ΔihfB strains of A. actinomycetemcomitans, suggesting that IHF is a negative regulator of the ygiW-qseBC operon.


Assuntos
Aggregatibacter actinomycetemcomitans/genética , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Óperon , Fatores de Transcrição/metabolismo , Transcrição Gênica , Aggregatibacter actinomycetemcomitans/fisiologia , Fusão Gênica Artificial , Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genes Reporter , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Virulência , beta-Galactosidase/análise , beta-Galactosidase/genética
16.
FEMS Microbiol Lett ; 357(2): 184-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24965736

RESUMO

In this study, we show that integration host factor protein (IHF) is required for replication of pYGK plasmids in Aggregatibacter actinomycetemcomitans. YGK plasmids were not replicated in A. actinomycetemcomitans strains lacking either the α- or ß- subunit of IHF. However, the deletion mutants were complemented, and plasmid replication was restored when the promoter region and gene for either ihfA or ihfB was cloned into pYGK. We also identified two motifs that resemble the consensus IHF-binding site in a 813-bp fragment containing the pYGK origin of replication. Using electrophoretic mobility shift assays, purified IHFα-IHFß protein complex was shown to bind to probes containing either of these motifs. To our knowledge, this is the first report showing that plasmid replication is IHF-dependent in the family Pasteurellaceae. In addition, using site-direct mutagenesis, the XbaI and KpnI restriction sites in the suicide vector pJT1 were modified to generate plasmid pJT10. The introduction of these new unique sites in pJT10 facilitates the transfer of transcriptional or translational lacZ fusion constructs for the generation of single-copy chromosomal insertion of the reporter construct. Plasmid pJT10 and its derivatives will be useful for genetic studies in Aggregatibacter (Actinobacillus) and probably other genera of Pasteurellaceae, including Haemophilus, Pasteurella, and Mannheimia.


Assuntos
Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/metabolismo , Replicação do DNA , Fatores Hospedeiros de Integração/metabolismo , Plasmídeos , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Teste de Complementação Genética , Vetores Genéticos , Fatores Hospedeiros de Integração/genética , Ligação Proteica , Origem de Replicação
17.
J Bacteriol ; 196(8): 1597-607, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532769

RESUMO

We previously showed that the Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons are regulated by LsrR and cyclic AMP receptor protein (CRP) and that proper regulation of the lsr locus is required for optimal biofilm growth by A. actinomycetemcomitans. Here, we identified sequences that reside immediately upstream from both the lsrA and lsrR start codons that closely resemble the consensus recognition sequence of Escherichia coli integration host factor (IHF) protein. A. actinomycetemcomitans IHFα and IHFß were expressed and purified as hexahistidine fusion proteins, and using electrophoretic mobility shift assays (EMSAs), the IHFα-IHFß protein complex was shown to bind to probes containing the putative IHF recognition sequences. In addition, single-copy chromosomal insertions of lsrR promoter-lacZ and lsrA promoter-lacZ transcriptional fusions in wild-type A. actinomycetemcomitans and ΔihfA and ΔihfB mutant strains showed that IHF differentially regulates the lsr locus and functions as a negative regulator of lsrRK and a positive regulator of lsrACDBFG. Deletion of ihfA or ihfB also reduced biofilm formation and altered biofilm architecture relative to the wild-type strain, and these phenotypes were partially complemented by a plasmid-borne copy of ihfA or ihfB. Finally, using 5' rapid amplification of cDNA ends (RACE), two transcriptional start sites (TSSs) and two putative promoters were identified for lsrRK and three TSSs and putative promoters were identified for lsrACDBFG. The function of the two lsrRK promoters and the positive regulatory role of IHF in regulating lsrACDBFG expression were confirmed with a series of lacZ transcriptional fusion constructs. Together, our results highlight the complex transcriptional regulation of the lsrACDBFG and lsrRK operons and suggest that multiple promoters and the architecture of the lsrACDBFG-lsrRK intergenic region may control the expression of these operons.


Assuntos
Aggregatibacter actinomycetemcomitans/genética , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Óperon , Fusão Gênica Artificial , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Deleção de Genes , Genes Reporter , Teste de Complementação Genética , Fatores Hospedeiros de Integração/genética , Regiões Promotoras Genéticas , Ligação Proteica , Sítio de Iniciação de Transcrição , beta-Galactosidase/análise , beta-Galactosidase/genética
18.
J Periodontol ; 85(6): 837-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24147843

RESUMO

BACKGROUND: Cigarette smokers are more susceptible to periodontal diseases and are more likely to be infected with Porphyromonas gingivalis than non-smokers. Furthermore, smoking is known to alter the expression of P. gingivalis surface components and compromise immunoglobulin (Ig)G generation. The aim of this study is to evaluate whether the overall IgG response to P. gingivalis is suppressed in smokers in vivo and whether previously established in vitro tobacco-induced phenotypic P. gingivalis changes would be reflected in vivo. METHODS: The authors examined the humoral response to several P. gingivalis strains as well as specific tobacco-regulated outer membrane proteins (FimA and RagB) by enzyme-linked immunosorbent assay in biochemically validated (salivary cotinine) smokers and non-smokers with chronic periodontitis (CP: n = 13) or aggressive periodontitis (AgP: n = 20). The local and systemic presence of P. gingivalis DNA was also monitored by polymerase chain reaction. RESULTS: Smoking was associated with decreased total IgG responses against clinical (10512, 5607, and 10208C; all P <0.05) but not laboratory (ATCC 33277, W83) P. gingivalis strains. Smoking did not influence IgG produced against specific cell-surface proteins, although a non-significant pattern toward increased total FimA-specific IgG in patients with CP, but not AgP, was observed. Seropositive smokers were more likely to be infected orally and systemically with P. gingivalis (P <0.001), as determined by 16S RNA analysis. CONCLUSION: Smoking alters the humoral response against P. gingivalis and may increase P. gingivalis infectivity, strengthening the evidence that mechanisms of periodontal disease progression in smokers may differ from those of non-smokers with the same disease classification.


Assuntos
Periodontite Agressiva/microbiologia , Antígenos de Bactérias/imunologia , Periodontite Crônica/microbiologia , Porphyromonas gingivalis/imunologia , Fumar/imunologia , Adulto , Periodontite Agressiva/imunologia , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Periodontite Crônica/imunologia , Cotinina/análise , DNA Bacteriano/análise , Índice de Placa Dentária , Feminino , Proteínas de Fímbrias/imunologia , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Índice Periodontal , Fenótipo , Pili Sexual/imunologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/patogenicidade , Saliva/química , Nicotiana
19.
Microbiology (Reading) ; 159(Pt 6): 989-1001, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23519160

RESUMO

The quorum-sensing Escherichia coli regulators B and C (QseBC) two-component system were previously shown to regulate biofilm growth of the oral pathogen Aggregatibacter actinomycetemcomitans and to be essential for virulence. In this study, we use RT-PCR to show that an open reading frame, ygiW, residing upstream of qseBC and encoding a hypothetical protein is co-expressed with qseBC. In addition, using a series of lacZ transcriptional fusion constructs and 5'-rapid amplification of cDNA Ends (RACE), the promoter that drives expression of the ygiW-qseBC operon and the transcriptional start site was mapped to the 372 bp intergenic region upstream from ygiW. No internal promoters drive qseBC expression independently from ygiW. However, qseBC expression is attenuated by approximately ninefold by a putative attenuator stem-loop (ΔG = -77.0 KJ/mol) that resides in the 137 bp intergenic region between ygiW and qseB. The QseB response regulator activates expression of the ygiW-qseBC operon and transcription from the ygiW promoter is drastically reduced in ΔqseB and ΔqseBC mutants of A. actinomycetemcomitans. In addition, transcriptional activity of the ygiW promoter is significantly reduced in a mutant expressing an in-frame deletion of qseC that lacks the sensor domain of QseC, suggesting that a periplasmic signal is required for QseB activation. Finally, a non-polar in-frame deletion in ygiW had little effect on biofilm depth but caused a significant increase in surface coverage relative to wild-type. Complementation of the mutant with a plasmid-borne copy of ygiW reduced surface coverage back to wild-type levels. Interestingly, deletion of the sensor domain of QseC or of the entire qseC open reading frame resulted in significant reductions in biofilm depth, biomass and surface coverage, indicating that the sensor domain is essential for optimal biofilm formation by A. actinomycetemcomitans. Thus, although ygiW and qseBC are co-expressed, they regulate biofilm growth by distinct mechanisms.


Assuntos
Proteínas de Bactérias/biossíntese , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Pasteurellaceae/genética , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Óperon , Pasteurellaceae/fisiologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Sítio de Iniciação de Transcrição
20.
Plasmid ; 69(3): 211-22, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23353051

RESUMO

To elucidate the putative function of a gene, effective tools are required for genetic characterization that facilitate its inactivation, deletion or modification on the bacterial chromosome. In the present study, the nucleotide sequence of the Escherichia coli/Aggregatibacter actinomycetemcomitans shuttle vector pYGK was determined, allowing us to redesign and construct a new shuttle cloning vector, pJT4, and promoterless lacZ transcriptional/translational fusion plasmids, pJT3 and pJT5. Plasmids pJT4 and pJT5 contain the origin of replication necessary to maintain shuttle vector replication. In addition, a new suicide vector, pJT1, was constructed for the generation of scarless and markerless deletion mutations of genes in the oral pathogen A. actinomycetemcomitans. Plasmid pJT1 is a pUC-based suicide vector that is counter-selectable for sucrose sensitivity. This vector does not leave antibiotic markers or scars on the chromosome after gene deletion and thus provides the option to combine several mutations in the same genetic background. The effectiveness of pJT1 was demonstrated by the construction of A. actinomycetemcomitans isogenic qseB single deletion (ΔqseB) mutant and lsrRK double deletion mutants (ΔlsrRK). These new vectors may offer alternatives for genetic studies in A. actinomycetemcomitans and other members of the HACEK (Haemophilus spp., A. actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae) group of Gram-negative bacteria.


Assuntos
Aggregatibacter actinomycetemcomitans/genética , Replicação do DNA , Vetores Genéticos/genética , Óperon Lac , Plasmídeos/genética , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Genes Reporter , Genes Transgênicos Suicidas , Mapeamento Físico do Cromossomo , Regiões Promotoras Genéticas , Origem de Replicação , Deleção de Sequência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...