Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404010, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935245

RESUMO

The imperfect charge behavior at the interfaces of perovskite/electron-transport layer (ETL)/transparent conducting oxide (TCO) limits the further performance improvement of perovskite/silicon tandem solar cells. Herein, we deposited an indium tin oxide interlayer between ETL and TCO to address this issue. Specifically, the interlayer was prepared using an all-physical and H2O-free method, electron-beam evaporation, which can avoid any potential damage to the underlying perovskite and ETL layers. Moreover, the interlayer's composition can be readily tuned by changing the evaporator component, enabling us to regulate the contact resistance and energy-level alignment of the ETL/TCO interface. Consequently, the resultant perovskite/silicon tandem solar cells exhibit an impressive power conversion efficiency of 30.8% (certified 30.3%). Moreover, the device retains 98% of its initial PCE after continuous operation under ambient conditions for 1078 hours, representing one of the most stable and efficient perovskite/silicon tandem solar cells. This article is protected by copyright. All rights reserved.

2.
Adv Mater ; 36(21): e2311923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400811

RESUMO

Light-induced phase segregation is one of the main issues restricting the efficiency and stability of wide-bandgap perovskite solar cells (WBG PSCs). Small organic molecules with abundant functional groups can passivate various defects, and therefore suppress the ionic migration channels for phase segregation. Herein, a series of pyridine-derivative isomers containing amino and carboxyl are applied to modify the perovskite surface. The amino, carboxyl, and N-terminal of pyridine in all of these molecules can interact with undercoordinated Pb2+ through coordination bonds and suppress halide ions migration via hydrogen bonding. Among them, the 5-amino-3-pyridine carboxyl acid (APA-3) treated devices win the champion performance, enabling an efficiency of 22.35% (certified 22.17%) using the 1.68 eV perovskite, which represents one of the highest values for WBG-PSCs. This is believed to be due to the more symmetric spatial distribution of the three functional groups of APA-3, which provides a better passivation effect independent of the molecular arrangement orientation. Therefore, the APA-3 passivated perovskite shows the slightest halide segregation, the lowest defect density, and the least nonradiative recombination. Moreover, the APA-3 passivated device retains 90% of the initial efficiency after 985 h of operation at the maximum power point, representing the robust durability of WBG-PSCs under working conditions.

3.
Nanomicro Lett ; 15(1): 111, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121964

RESUMO

Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (VOC) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)2PbCl4 (phenmethylammonium is referred to as PMA) passivation layer on top of the WBG active layer. The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent. First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase. The (PMA)2PbCl4 forms improved type-I energy level alignment with the WBG perovskite, reducing the electron recombination at the perovskite/hole-transport-layer interface. Applying this strategy in fabricating semi-transparent WBG perovskite solar cells (indium tin oxide as the back electrode), the VOC deficits can be reduced to 0.49 V, comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes. Consequently, we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high VOC of 1.23 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...