Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 951-958, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38959740

RESUMO

HYPOTHESIS: Our hypothesis is that dynamic interfacial tension values as measured by the partitioned-Edge-based Droplet GEneration (EDGE) tensiometry can be connected to those obtained with classical techniques, such as the automated drop tensiometer (ADT), expanding the range of timescales towards very short ones. EXPERIMENTS: Oil-water and air-water interfaces are studied, with whey protein isolate solutions (WPI, 2.5 - 10 wt%) as the continuous phase. The dispersed phase consists of pure hexadecane or air. The EDGE tensiometer and ADT are used to measure the interfacial (surface) tension at various timescales. A comparative assessment is carried out to identify differences between protein concentrations as well as between oil-water and air-water interfaces. FINDINGS: The EDGE tensiometer can measure at timescales down to a few milliseconds and up to around 10 s, while the ADT provides dynamic interfacial tension values after at least one second from droplet injection and typically is used to also cover hours. The interfacial tension values measured with both techniques exhibit overlap, implying that the techniques provide consistent and complementary information. Unlike the ADT, the EDGE tensiometer distinguishes differences in protein adsorption dynamics at protein concentrations as high as 10 wt% (which is the highest concentration tested) at both oil-water and air-water interfaces.

2.
Lab Chip ; 22(20): 3860-3868, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36103197

RESUMO

The size of droplets and bubbles, and the properties of emulsions and foams strongly depend on dynamic interfacial tension (γd) - a parameter that is often inaccessible due to the very short time scales for droplet and bubble formation, and the inaccessibility of (e.g., food) production lines. To solve this challenge, we developed a microfluidic tensiometer that can measure γd by monitoring the formation time of both droplets and bubbles. Our tensiometer is a pressure-driven microfluidic device that operates based on the principle of a pressure balance: the formation of a droplet (or a bubble) is initialized when the Laplace pressure of the interface is decreased below the externally applied pressure, and this decrease is caused by a reduction in γd that can be calculated from the applied pressure and the Young-Laplace equation. The decay of γd due to surfactant adsorption can be followed at the characteristic time scale, which is dependent on surfactant type and concentration. For 0.05-1% wt sodium dodecyl sulfate (SDS), we were able to measure γd at time scales down to 1 ms and 0.1 ms for droplet and bubble interfaces, respectively, at increasing applied pressures and SDS concentrations. Our tensiometer proves to be a simple, robust method that inherently allows access to nearly the full range of dynamic interfacial tension at relevant time scales.


Assuntos
Microfluídica , Tensoativos , Emulsões , Dodecilsulfato de Sódio , Tensão Superficial
3.
J Colloid Interface Sci ; 622: 218-227, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35504099

RESUMO

HYPOTHESIS: The interplay of interface evolution and surfactant adsorption determines the formation and stabilization of bubbles, and can be controlled by the liquid phase properties. EXPERIMENTS: We studied bubble formation in an Edge-based Droplet GEneration (EDGE) microfluidic device at relevant length and time scale, allowing investigation of sub-events in a single bubble formation cycle. We vary the properties of the continuous phase that contains whey proteins and study a range of trans-pore pressures (Pd∗). FINDINGS: The shallow pores highlight the crucial role of the Laplace pressure and dynamic adsorption of proteins to the meniscus. Bubble formation is divided into two regimes by the Laplace pressure of the bare meniscus inside the pore. At Pd∗<1400 mbar, pre-adsorption of proteins is required to lower the Laplace pressure; the bubble formation frequency f0 increases with increasing protein concentration and is hardly affected by velocity and viscosity. At Pd∗≥1400 mbar, bubble formation immediately occurs upon applying pressure, and f0 mainly decreases with increasing viscosity. In both regimes, the initial bubble size d0 mainly increases with the viscosity (~η1/3). Bubble coalescence is only observed at Pd∗≥1400 mbar and can be effectively suppressed by raising protein concentration and viscosity within certain boundaries, yet ultimately this is at the cost of higher polydispersity of the bubbles. Our insights into the formation dynamics of micrometer-sized bubbles at time scales down to tens of microseconds can be used for effective control of bubble formation and stabilization in practical applications.


Assuntos
Microfluídica , Tensoativos , Adsorção , Viscosidade
4.
Membranes (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564527

RESUMO

Membrane foaming is a promising alternative to conventional foaming methods to produce uniform bubbles. In this study, we provide a fundamental study of a cross-flow membrane foaming (CFMF) system to understand and control bubble formation for various process conditions and fluid properties. Observations with high spatial and temporal resolution allowed us to study bubble formation and bubble coalescence processes simultaneously. Bubble formation time and the snap-off bubble size (D0) were primarily controlled by the continuous phase flow rate (Qc); they decreased as Qc increased, from 1.64 to 0.13 ms and from 125 to 49 µm. Coalescence resulted in an increase in bubble size (Dcoal>D0), which can be strongly reduced by increasing either continuous phase viscosity or protein concentration-factors that only slightly influence D0. Particularly, in a 2.5 wt % whey protein system, coalescence could be suppressed with a coefficient of variation below 20%. The stabilizing effect is ascribed to the convective transport of proteins and the intersection of timescales (i.e., µs to ms) of bubble formation and protein adsorption. Our study provides insights into the membrane foaming process at relevant (micro-) length and time scales and paves the way for its further development and application.

5.
J Colloid Interface Sci ; 602: 316-324, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130178

RESUMO

HYPOTHESIS: Dynamic adsorption effects can play a crucial role in bubble formation and stabilization. We hypothesize that microfluidic tools provide direct insights to these effects, and that the final bubble size depends on the intersection of time scales for bubble formation versus adsorption of proteins. EXPERIMENTS: We use a microfluidic device to study Laplace pressure-driven formation of bubbles that are stabilized by whey proteins. Bubble behavior is studied as a function of the pressure difference imposed across the pores (Pd∗), and thus the bubble formation time (τ, ranging from µs to s), using highspeed recordings, quasi-static pressure arguments and a semi-empirical coalescence model. FINDINGS: We observe two distinct bubble formation regimes, delimited by the pressure difference required to initiate bubble formation in pure water, Pd∗= 1400 mbar. When Pd∗<1400 mbar, protein adsorption is a requisite to lower the surface tension and initialize bubble formation. Individual bubbles (fixed d0~ 25 µm) are formed slowly with τ≫1 ms. When Pd∗ exceeds 1400 mbar, bubbles (fixed d0~ 16 µm) experience no adsorption lag and thus are formed at steeply increasing frequency, with τ < 1 ms. Interaction between these bubbles causes finite coalescence to a diameter dcoal that increases for lower τ. A minimum time of 0.4 ms is needed to immediately stabilize individual bubbles. Our study provides a promising microfluidic tool to study bubble formation and coalescence dynamics simultaneously.


Assuntos
Microfluídica , Água , Adsorção , Tensão Superficial
6.
Foods ; 8(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614474

RESUMO

Emulsifiers play a key role in the stabilization of foam bubbles. In food foams, biopolymers such as proteins are contributing to long-term stability through several effects such as increasing bulk viscosity and the formation of viscoelastic interfaces. Recent studies have identified promising new stabilizers for (food) foams and emulsions, for instance biological particles derived from water-soluble or water-insoluble proteins, (modified) starch as well as chitin. Microfluidic platforms could provide a valuable tool to study foam formation on the single-bubble level, yielding mechanistic insights into the formation and stabilization (as well as destabilization) of foams stabilized by these new stabilizers. Yet, the recent developments in microfluidic technology have mainly focused on emulsions rather than foams. Microfluidic devices have been up-scaled (to some extent) for large-scale emulsion production, and also designed as investigative tools to monitor interfaces at the (sub)millisecond time scale. In this review, we summarize the current state of the art in droplet microfluidics (and, where available, bubble microfluidics), and provide a perspective on the applications for (food) foams. Microfluidic investigations into foam formation and stability are expected to aid in optimization of stabilizer selection and production conditions for food foams, as well as provide a platform for (large-scale) production of monodisperse foams.

7.
PLoS One ; 11(12): e0167330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936025

RESUMO

Wheat germ (WG) is quite susceptible to deterioration due to the presence of lipase (LA) and lipoxygenase (LOX). Therefore it is indispensable to adopt a stabilization step to decrease the activity of LA and LOX while retaining a maximum level of nutrients. But over-drying can make foodstuffs more susceptible to autoxidation. So a stabilization protocol for inactivating LA and LOX of WG with a temperature- controlled short wave infrared (SIR) radiation system was adopted to retard its rancidity and retain a maximum level of fat-soluble nutrients. Meanwhile, the critical storage water activity (Aw) of WG for inhibiting both hydrolytic and oxidative rancidity was appraised. Results indicate that WG irradiated at 90°C for 20 min acquired the optimal stabilization effect, and its residual LA and LOX activity were 18.02% and 19.21%, respectively. At this condition, the free fatty acids (FFA) content and peroxide value (PV) increment of WG oil at 40°C remained below 5% and 2.24 meq O2/kg for 60 days, respectively. The residual Aw of this WG sample was 0.13, and it is near the Aw corresponding to its monolayer. No significant decrease of fatty acids was observed during SIR processing, while about 96.42% of its original tocopherols still retained in WG treated at 90°C for 20 min.


Assuntos
Ativação Enzimática/efeitos da radiação , Lipase/metabolismo , Lipoxigenase/metabolismo , Óleos de Plantas/metabolismo , Triticum/enzimologia , Ácidos Graxos/metabolismo , Manipulação de Alimentos/métodos , Raios Infravermelhos , Oxirredução/efeitos da radiação , Temperatura , Tocoferóis/metabolismo
8.
Chem Commun (Camb) ; 48(97): 11898-900, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23125976

RESUMO

An imidazolium-based bifunctional heterogeneous catalyst exhibits excellent catalytic efficiency in asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. The superior catalytic performance and the enhanced enantioselectivity is attributed to the synergistic effect of salient imidazolium phase-transfer function and the confined nature of the chiral organoiridium catalyst.


Assuntos
Imidazóis/química , Compostos Organometálicos/química , Dióxido de Silício/química , Álcoois/síntese química , Álcoois/química , Catálise , Hidrogenação , Irídio/química , Cetonas/química , Estrutura Molecular , Tamanho da Partícula , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...