Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38887029

RESUMO

BACKGROUND: This study aimed to assess the association between outdoor activity and myopia among children and adolescents and investigate whether sleep time could mediate this relationship. METHODS: This cross-sectional study was performed on students aged 4-16 years in China, from August 2021 to January 2022. Outdoor activity was assessed by the Assessment Questionnaire of Exposure to Sunlight Activities for Students (AQESAS). Binary logistic regression combined with the mediation analysis was used to analyze the association of AQESAS with myopia and the mediating effect of sleep time on this relationship. RESULTS: The prevalence of myopia was 53.51% (N = 1609). Multivariate logistic regression analysis showed that more sleep time (OR = 0.794, 95%CI: 0.707-0.893) and a higher score of AQESAS (OR = 0.989, 95%CI: 0.981-0.996) were significantly associated with a decreased risk of myopia. Mediation analysis revealed that sleep time plays a mediating role in the association between outdoor activity and myopia (ACME = -0.0006, P < 0.001), and the mediation proportion was 19.7%. CONCLUSION: Outdoor activity affects myopia directly and indirectly through sleep time. The result suggested that children may be able to reduce the risk of myopia by promoting sleep through increased awareness of outdoor activity and exposure to sunlight.

2.
Front Microbiol ; 15: 1314528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444809

RESUMO

The consumption of probiotics has been extensively employed for the management or prevention of gastrointestinal disorders by modifying the gut microbiota and changing metabolites. Nevertheless, the probiotic-mediated regulation of host metabolism through the metabolism of bile acids (BAs) remains inadequately comprehended. The gut-liver axis has received more attention in recent years due to its association with BA metabolism. The objective of this research was to examine the changes in BAs and gut microbiota using an in vitro fermentation model. The metabolism and regulation of gut microbiota by commercial probiotics complex containing various species such as Lactobacillus, Bifidobacterium, and Streptococcus were investigated. The findings indicated that the probiotic strains had produced diverse metabolic profiles of BAs. The probiotics mixture demonstrated the greatest capacity for Bile salt hydrolase (BSH) deconjugation and 7α-dehydroxylation, leading to a significant elevation in the concentrations of Chenodeoxycholic acid, Deoxycholic acidcholic acid, and hyocholic acid in humans. In addition, the probiotic mixtures have the potential to regulate the microbiome of the human intestines, resulting in a reduction of isobutyric acid, isovaleric acid, hydrogen sulfide, and ammonia. The probiotics complex intervention group showed a significant increase in the quantities of Lactobacillus and Bifidobacterium strains, in comparison to the control group. Hence, the use of probiotics complex to alter gut bacteria and enhance the conversion of BAs could be a promising approach to mitigate metabolic disorders in individuals.

3.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4621-4634, 2023 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-38013188

RESUMO

Sialyllactose is one of the most abundant sialylated oligosaccharides in human milk oligosaccharides (HMOs), which plays an important role in the healthy development of infants and young children. However, its efficient and cheap production technology is still lacking presently. This study developed a two-step process employing multiple-strains for the production of sialyllactose. In the first step, two engineered strains, E. coli JM109(DE3)/ pET28a-BT0453 and JM109(DE3)/pET28a-nanA, were constructed to synthesize the intermediate N-acetylneuraminic acid. When the ratio of the biomass of the two engineered strains was 1:1 and the reaction time was 32 hours, the maximum yield of N-acetylneuraminic acid was 20.4 g/L. In the second step, E. coli JM109(DE3)/ pET28a-neuA, JM109(DE3)/ pET28a-nst and Baker's yeast were added to the above fermentation broth to synthesize 3'-sialyllactose (3'-SL). Using optimal conditions including 200 mmol/L N-acetyl-glucosamine and lactose, 150 g/L Baker's yeast, 20 mmol/L Mg2+, the maximum yield of 3'-SL in the fermentation broth reached 55.04 g/L after 24 hours of fermentation and the conversion rate of the substrate N-acetyl-glucosamine was 43.47%. This research provides an alternative technical route for economical production of 3'-SL.


Assuntos
Escherichia coli , Ácido N-Acetilneuramínico , Criança , Humanos , Pré-Escolar , Escherichia coli/genética , Lactose , Fermentação , Saccharomyces cerevisiae , Oligossacarídeos , Glucosamina
4.
Medicine (Baltimore) ; 96(14): e5953, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28383398

RESUMO

The gastrointestinal (GI) tract of a fetus in utero is sterile but it becomes colonized with environmental microorganisms shortly after birth. Since the gut microbiota undergoes substantial changes in early life, healthy gut microflora is essential to an infant's gut health and immune system and probably also has an effect on overall health status in later life. Probiotics, defined as viable microbial preparations that have a beneficial effect on the health of the host, represent a rapidly expanding field. Although randomized controlled trials using probiotics in infants have shown promising results in the prevention and treatment of common diseases such as diarrhea and allergy, little is known about whether probiotics could offer benefits to healthy infants. We have designed a randomized controlled trial to test the hypothesis that an oral preparation of probiotics is superior to placebo in improving digestive and immune function in healthy infants.The trial will be a randomized, double-blind, placebo-controlled, 2-parallel-group study in Shanghai, China. After a 2-week run-in period, 200 exclusively formula-fed healthy infants aged 4 to 6 months will be randomly allocated to receive either a probiotic product containing Bifidobacterium infantis R0033, Bifidobacterium bifidum R0071, and Lactobacillus helveticus R0052 or an identical placebo once daily for 4 weeks and will be followed up for 8 weeks. The duration of the subject's participation will be 14 weeks, with a total of 5 visits: inclusion (Visit 1, Day 1), start of intervention (V2, D15), end of intervention (V3, D44), and follow-up (V4 and V5, D72 and D100). Stool and saliva samples will be collected at the first 3 visits to measure microbial populations and secretory immunoglobulin A (SIgA), respectively. Physical examination will be performed at each visit, and tolerance records will be completed 1 day prior to each visit. The primary endpoints will be the changes in the composition of fecal microbiota, particularly the Bifidobacterium bifidum population. The secondary endpoints will include the change in salivary SIgA level, growth parameters, digestive tolerance, and adverse events.An effective, practical, and acceptable probiotic intervention in manipulating the gut microbiota and boosting the immune system in formula-fed infants would represent a major clinical advance. The administration of probiotic supplementation or follow-on formula to infant may be associated with some clinic benefits.


Assuntos
Digestão/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Probióticos/uso terapêutico , Bifidobacterium bifidum , Bifidobacterium longum subspecies infantis , Protocolos Clínicos , Método Duplo-Cego , Fezes/microbiologia , Humanos , Imunoglobulina A Secretora/análise , Lactente , Lactobacillus helveticus , Seleção de Pacientes , Probióticos/farmacologia , Saliva/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...