Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403612, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924298

RESUMO

The development of highly efficient urea oxidation reaction (UOR) electrocatalysts is the key to simultaneously achieving green hydrogen production and the treatment of urea-containing wastewater. Ni-based electrocatalysts are expected to replace precious metal catalysts for UOR because of their high activity and low cost. However, the construction of Ni-based electrocatalysts that can synergistically enhance UOR still needs further in-depth study. In this study, highly active electrocatalysts of NiFe(OH)x/MnO2 p-p heterostructures are constructed on nickel foam (NF) by electrodeposition (NiFe(OH)x/MnO2/NF), illustrating the effect of electronic structure changes at heterogeneous interfaces on UOR and revealing the catalytic mechanism of UOR. The NiFe(OH)x/MnO2/NF only needs 1.364 V (vs Reversible Hydrogen Electrode, RHE) to reach 10 mA cm-2 for UOR. Structural characterizations and theoretical calculations indicate that energy gap leads to directed charge transfer and redistribution at the heterojunction interface, forming electron-rich (MnO2) and electron-poor (NiFe(OH)x) regions. This enhances the catalyst's adsorption of urea and reaction intermediates, reduces thermodynamic barriers during the UOR process, promotes the formation of Ni3+ phases at lower potentials, and thus improves UOR performance. This work provides a new idea for the development of Ni-based high-efficiency UOR electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...