Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(36): 37942-37952, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39281948

RESUMO

A three-step method for the synthesis of methyl 5-(2,4-difluorophenyl)-4-methoxy-1H-pyrrole-3-carboxylate 1, a key intermediate of fexuprazan, is reported in this paper. Using low-priced sodium p-tolylsulfinate as the starting material, compound 28 was obtained with a 96.8% yield in the first step by optimizing the experimental parameters with a Box-Behnken experimental design. Subsequently, isonitrile compound 29 was obtained by dehydration. Finally, impurities 31 and 32 in the last step of the reaction were identified and converted into target product 1 by a one-pot method, which significantly improves the utilization of atoms. Key intermediate 1 was obtained via a three-step process with a yield of 68-70% and purity that exceeded 99%. In addition, the mechanism of the cyclization reaction was proposed. This method has potential for industrial production because the raw materials are inexpensive, the procedure is simple, and a high yield is obtained.

2.
Sci Total Environ ; 950: 175228, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39102954

RESUMO

Soil freeze-thaw cycles (FTCs) are common in temperate agricultural ecosystems during the non-growing season and are progressively influenced by climate change. The impact of these cycles on soil microbial communities, crucial for ecosystem functioning, varies under different agricultural management practices. Here, we investigated the dynamic changes in soil microbial communities in a Mollisol during seasonal FTCs and examined the effects of stover mulching and nitrogen fertilization. We revealed distinct responses between bacterial and fungal communities. The dominant bacterial phyla reacted differently to FTCs: for example, Proteobacteria responded opportunistically, Actinobacteria, Acidobacteria, Choroflexi and Gemmatimonadetes responded sensitively, and Saccharibacteria exhibited a tolerance response. In contrast, the fungal community composition remained relatively stable during FTCs, except for a decline in Glomeromycota. Certain bacterial OTUs acted as sensitive indicators of FTCs, forming keystone modules in the network that are closely linked to soil carbon, nitrogen content and potential functions. Additionally, neither stover mulching nor nitrogen fertilization significantly influenced microbial richness, diversity and potential functions. However, over time, more indicator species specific to these agricultural practices began to emerge within the networks and gradually occupied the central positions. Furthermore, our findings suggest that farming practices, by introducing keystone microbes and changing interspecies interactions (even without changing microbial richness and diversity), can enhance microbial community stability against FTC disturbances. Specifically, higher nitrogen input with stover removal promotes fungal stability during soil freezing, while lower nitrogen levels increase bacterial stability during soil thawing. Considering the fungal tolerance to FTCs, we recommend reducing nitrogen input for manipulating bacterial interactions, thereby enhancing overall microbial resilience to seasonal FTCs. In summary, our research reveals that microbial responses to seasonal FTCs are reshaped through land management to support ecosystem functions under environmental stress amid climate change.


Assuntos
Agricultura , Mudança Climática , Congelamento , Microbiota , Estações do Ano , Microbiologia do Solo , Solo , Agricultura/métodos , Solo/química , Bactérias , Ecossistema , Fungos , Nitrogênio/análise
3.
Sci Total Environ ; 927: 172064, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569968

RESUMO

Soil parent material is the second most influential factor in pedogenesis, influencing soil properties and microbial communities. Different assembly processes shape diverse functional microbial communities. The question remains unresolved regarding how these ecological assembly processes affect microbial communities and soil functionality within soils on different parent materials. We collected soil samples developed from typical parent materials, including basalt, granite, metamorphic rock, and marine sediments across soil profiles at depths of 0-20, 20-40, 40-80, and 80-100 cm, within rubber plantations on Hainan Island, China. We determined bacterial community characteristics, community assembly processes, and soil enzyme-related functions using 16S rRNA high-throughput sequencing and enzyme activity analyses. We found homogeneous selection, dispersal limitation, and drift processes were the dominant drivers of bacterial community assembly across soils on different parent materials. In soils on basalt, lower pH and higher moisture triggered a homogeneous selection-dominated assembly process, leading to a less diverse community but otherwise higher carbon and nitrogen cycling enzyme activities. As deterministic process decreased, bacterial community diversity increased with stochastic process. In soils on marine sediments, lower water, carbon, and nutrient content limited the dispersal of bacterial communities, resulting in higher community diversity and an increased capacity to utilize relative recalcitrant substrates by releasing more oxidases. The r-strategy Bacteroidetes and genera Sphingomonas, Bacillus, Vibrionimonas, Ochrobactrum positively correlated with enzyme-related function, whereas k-strategy Acidobacteria, Verrucomicrobia and genera Acidothermus, Burkholderia-Caballeronia-Paraburkholderia, HSB OF53-F07 showed negative correlations. Our study suggests that parent material could influence bacterial community assembly processes, diversity, and soil enzyme-related functions via soil properties.


Assuntos
Bactérias , Microbiota , Microbiologia do Solo , Solo , Solo/química , China , RNA Ribossômico 16S , Biodiversidade
4.
Sci Total Environ ; 825: 153929, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183631

RESUMO

Currently, global agricultural development is in a critical period, as it contends with a growing population, degraded farmland, and serious environmental issues. Although low-disturbance practices are recommended to improve soil health, it is unclear whether such practices benefit critical deep soil functioning. Here, we compared the soil bacterial communities and physicochemical parameters across 3-m deep soil profiles in a Mollisol of Northeast China at the end of the dormant season after 10 years of farming under conventional tillage without stover mulching (CT), no-tillage without stover mulching (NTNS), and no-tillage with stover mulching (NTSM). We found that low-disturbance practices (NTNS and NTSM), compared with CT, evidently promoted soil bacterial species richness and diversity and enriched potential metabolic diversity. When compared to the bacterial communities in CT, the vertical dissimilarity of bacterial communities in NTNS decreased, while that in NTSM increased, indicating that no-tillage alone homogenized the composition of the bacterial community through soil depth profiles, but straw mulching enhanced the uniqueness of community composition at each layer. In comparison to CT, no-tillage with stover mulching significantly increased the soil water content and root-associated organic carbon (SEOC), and decreased soil pH. Mineral nitrogen declined with depth to 60 cm and then increased to its maximum at 250-300 cm under CT and at 120-150 cm under NTNS and NTSM. More mineral nitrogen at 0-150 cm under low-disturbance practices would provide more available nitrogen for crops in the coming growing season, while the accumulated nitrogen at 150-300 cm under CT may leach into the groundwater. Taken together, our results show that low-disturbance practices can regenerate whole-soil bacterial diversity and potential function, and promote water retention and nitrogen holding capacity within the root zone, thus reducing the dose of nitrogen fertilizer and mitigating nitrogen contamination to deep groundwater, ultimately contributing to agricultural sustainability in Mollisol regions.


Assuntos
Agricultura , Solo , Agricultura/métodos , Bactérias , China , Fazendas , Nitrogênio/análise , Solo/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA