Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668502

RESUMO

The diffusion of trace elements in mining wastelands has attracted widespread attention in recent years. Vegetation restoration is an effective measure for controlling the surface migration of trace elements. However, there is no field evidence of the effective riparian zone width in mining wastelands. Three widths (5 m, 7.5 m, and 10 m) of Rhododendron simsii/Lolium perenne L. riparian zones were constructed in lead-zinc mining wastelands to investigate the loss of soil, cadmium (Cd), copper (Cu), arsenic (As), lead (Pb), and zinc (Zn). Asbestos tiles were used to cut off connections between adjacent plots to avoid hydrological interference. Plastic pipes and containers were used to collect runoff water. Results showed that more than 90% of trace elements were lost in sediment during low coverage and heavy rainfall periods. Compared with the 5 m riparian zone, the total trace element loss was reduced by 69-85% during the whole observation period in the 10 m riparian zone and by 86-99% during heavy rain periods in the 10 m riparian zone, which was due to reduction in runoff and concentrations of sediment and trace elements in the 10 m riparian zone. Indirect negative effects of riparian zone width on trace element loss through runoff and sediment concentration were found. These results indicated that the wide riparian zone promoted water infiltration, filtered soil particles, and reduced soil erosion and trace element loss. Riparian zones can be used as environmental management measures after mining areas are closed to reduce the spread of environmental risks in mining wastelands, although the long-term effects remain to be determined.

2.
Toxics ; 10(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36287888

RESUMO

The ecological and health risks posed by wastes discharged from mining areas to the environment and human health has aroused concern. 114 soil samples were collected from nine areas of long-term mine waste land in northwestern Yunnan to assess the pollution characteristics, ecological and health risks of heavy metals. The result revealed that the geo-accumulation indexes were Cd (4.00) > Pb (3.18) > Zn (1.87) > Cu (0.25). Semi-variance analysis revealed that Cd and Cu showed moderate spatial dependency, whereas Pb and Zn showed strong spatial dependency. Cd posed an extreme potential ecological risk. Slopes and ditches were extreme potential ecological risk areas. Non-carcinogenic risk to children from Pb and Carcinogenic risk to adult and children from Cd was non-negligible and direct ingestion was the major source. This study provided a scientific basis for policymakers in management and exposure reduction.

3.
Bull Environ Contam Toxicol ; 107(6): 1136-1142, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34132816

RESUMO

The species composition of eight shrub communities were investigated in order to understand the species diversity of plant communities in buffer zone and wetland of Momianhe stream along a long-term mine waste area, Lanping county, Yunnan province, China. Dominant plant species and soil samples were collected to analysis heavy metal (Cu, Zn, Pb and Cd) accumulation characteristics. The results showed that 100% samples for Zn, Pb, Cd, and 87.5% samples for Cu in the investigated area exceeded the Yunnan geochemical background value of the heavy metals in the soil. There were 36 plants species in communities, among which Epilobium pyrricholophum, Elsholtzia argyi, Artemisia vestita, Tripogon chinensis were the dominant species. Plant species, the number of individuals, Ecological Dominance (Do), Shannon-Wiener index (H'), Simpson diversity index (Dsi) and Pielou evenness index (Epi) were affected by Cd and Cu contents of the soil and sediment. Therefore, the results indicate that Cu and Cd contents and ecological risk in the process of long-term vegetation restoration of small catchment in lead-zinc mine waste area should pay more attention.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Rios , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...