Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715049

RESUMO

Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.


Assuntos
Dano ao DNA , Ferroptose , Ferro , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ferroptose/efeitos dos fármacos , Animais , Humanos , Camundongos , Dano ao DNA/efeitos dos fármacos , Ferro/química , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Feminino
2.
Adv Healthc Mater ; : e2304522, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530073

RESUMO

Cuproptosis is dependent on mitochondrial respiration modulation by targeting lipoylated tricarboxylic acid cycle (TCA) cycle proteins, showing great potential in cancer treatment. However, the specific release of copper ions at mitochondrial is highly needed and still a major challenge to trigger cellular cuproptosis. Herein, a metal-organic framework-based nanoplatform (ZCProP) is designed for mitochondrial-targeted and ATP/pH-responsive Cu2+ and prodigiosin release. The released Cu2+ promotes aggregation of lipoylated protein and loss of Fe-S cluster protein, resulting in cell cuproptosis. In the meanwhile, Cu2+ can concert with prodigiosin to induce mitochondrial dysfunction and DNA damage and enhance cell cuproptosis. Furthermore, this nanoplatform has an ability to deplete glutathione, which not only further promotes cuproptosis but also triggers cell ferroptosis by the suppression of glutathione peroxidase 4, an anti-ferroptosis protein. Collectively, the designed ZCProP nanoplatform can responsively release cargos at mitochondrial and realize a conspicuous therapeutic efficacy through a cuproptosis-mediated concerted effect. Along with its excellent biocompatibility, this nanoplatform may provide a novel therapeutic modality paradigm to boost cancer therapeutic strategies based on cuproptosis.

3.
Biophys Rep ; 9(3): 134-145, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38028149

RESUMO

Increased glycolysis for promoting adenosine triphosphate (ATP) generation is one of the hallmarks of cancer. Although reducing glucose intake or depriving cellular glucose can delay the growth of tumors to some extent, their therapeutic efficacy is a highly needed improvement for clinical translation. Herein, we found that mannose synergistic with glucose oxidase (GOx) can induce cell death by ATP inhibition, autophagy activation, and apoptosis protein upgradation. By using biodegradable zeolitic imidazolate frameworks (ZIF-8) as a nanocarrier (denoted as ZIF-8/M&G), the mannose and GOx can accumulate at the tumor site while having no obvious long-term toxicity. At the tumor site, GOx inhibits glycolysis by converting glucose and oxygen to H 2O 2 and gluconic acid, realizing oxidation therapy and expediting the degradation of the pH-responsive ZIF-8 nanoparticles, respectively. Simultaneously, mannose disturbs sugar metabolism and reduces oxygen consumption, which in turn promotes the GOx oxidation process. The concerted glycolysis inhibition through interactions between mannose and GOx endows ZIF-8/M&G nanospolier with excellent therapeutic efficacy both in vitro and in vivo. Synergistic glycolysis disturbance by the designed nanospoiler in this work proposes a versatile approach for metabolism disturbance to tumor treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...