Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401345, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973206

RESUMO

The limited and unstable absorption of excess exudate is a major challenge during the healing of infected wounds. In this study, a highly stable, multifunctional Janus dressing with unidirectional exudate transfer capacity is fabricated based on a single poly(lactide caprolactone) (PLCL). The success of this method relies on an acid hydrolysis reaction that transforms PLCL fibers from hydrophobic to hydrophilic in situ. The resulting interfacial affinity between the hydrophilic/phobic PLCL fibers endows the Janus structure with excellent unidirectional liquid transfer and high structural stability against repeated stretching, bending, and twisting. Various other functions, including wound status detection, antibacterial, antioxidant, and anti-inflammatory properties, are also integrated into the dressing by incorporating phenol red and epigallocatechin gallate. An in vivo methicillin-resistant Staphylococcus aureus-infected wound model confirms that the Janus dressing, with the capability to remove exudate from the infected site, not only facilitates epithelialization and collagen deposition, but also ensures low inflammation and high angiogenesis, thus reaching an ideal closure rate up to 98.4% on day 14. The simple structure, multiple functions, and easy fabrication of the dressing may offer a promising strategy for treating chronic wounds, rooted in the challenges of bacterial infection, excessive exudate, and persistent inflammation.

2.
J Control Release ; 372: 251-264, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38908755

RESUMO

Drug-loaded porous membranes have been deemed to be effective physicochemical barriers to separate postoperative adhesion-prone tissues in tendon healing. However, cell viability and subsequent tissue regeneration might be severely interfered with the unrestricted release and the locally excessive concentration of anti-inflammatory drugs. Herein, we report a double-layered membrane with sustained and uni-directional drug delivery features to prevent peritendinous adhesion without hampering the healing outcome. A vortex-assisted electrospinning system in combination with ibuprofen (IBU)-in-water emulsion was utilized to fabricate IBU-loaded poly-ʟ-lactic-acid (PLLA) fiber bundle membrane (PFB-IBU) as the anti-adhesion layer. The resultant highly porous structure, oleophilic and hydrophobic nature of PLLA fibers enabled in situ loading of IBU with a concentration gradient across the membrane thickness. Aligned collagen nanofibers were further deposited at the low IBU concentration side of the membrane for regulating cell growth and achieving uni-directional release of IBU. Drug release kinetics showed that the release amount of IBU from the high concentration side reached 79.32% at 14 d, while it was only 0.35% at the collagen side. Therefore, fibroblast proliferation at the high concentration side was successfully inhibited without affecting the oriented growth of tendon-derived stem cells at the other side. In vivo evaluation of the rat Achilles adhesion model confirmed the successful peritendinous anti-adhesion of our double-layered membrane, in that the macrophage recruitment, the inflammatory factor secretion and the deposition of pathological adhesion markers such as α-SMA and COL-III were all inhibited, which greatly improved the peritendinous fibrosis and restored the motor function of tendon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...