Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(15): e202218106, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36722696

RESUMO

Recently, lysosome targeting chimeras (LYTACs) have emerged as a promising technology that expands the scope of targeted protein degradation to extracellular targets. However, the preparation of chimeras by conjugation of the antibody and trivalent N-acetylgalactosamine (tri-GalNAc) is a complex and time-consuming process. The large uncertainty in number and position and the large molecular weights of the chimeras result in low internalization efficiency. To circumvent these problems, we developed the first aptamer-based LYTAC (Apt-LYTAC) to realize liver-cell-specific degradation of extracellular and membrane proteins by conjugating aptamers to tri-GalNAc. Taking advantage of the facile synthesis and low molecular weight of the aptamer, the Apt-LYTACs can efficiently and quickly degrade the extracellular protein PDGF and the membrane protein PTK7 through a lysosomal degradation pathway. We anticipate that the novel Apt-LYTACs will expand the usage of aptamers and provide a new dimension for targeted protein degradation.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas de Membrana , Anticorpos , Lisossomos
2.
Bioact Mater ; 11: 32-40, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34938910

RESUMO

Circulating tumor cells (CTCs), as important liquid biopsy target, can provide valuable information for cancer progress monitoring and individualized treatment. However, current isolation platforms incapable of balancing capture efficiency, specificity, cell viability, and gentle release have restricted the clinical applications of CTCs. Herein, inspired by the structure and functional merits of natural membrane interfaces, we established an antibody-engineered red blood cell (RBC-Ab) affinity interface on microfluidic chip for high-performance isolation and release of CTCs. The lateral fluidity, pliability, and anti-adhesion property of the RBC microfluidic interface enabled efficient CTCs capture (96.5%), high CTCs viability (96.1%), and high CTCs purity (average 4.2-log depletion of leukocytes). More importantly, selective lysis of RBCs by simply changing the salt concentration was utilized to destroy the affinity interface for efficient and gentle release of CTCs without nucleic acid contamination. Using this chip, CTCs were successfully detected in colon cancer samples with 90% sensitivity and 100% specificity (20 patients and 10 healthy individuals). After the release process, KRAS gene mutations of CTCs were identified from all the 5 cancer samples, which was consistent with the results of tissue biopsy. We expect this RBC interface strategy will inspire further biomimetic interface construction for rare cell analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...