Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 722: 150170, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797152

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent progressive liver disease. Currently, there is only one drug for NAFLD treatment, and the options are limited. Phosphodiesterase-4 (PDE-4) inhibitors have potential in treating NAFLD. Therefore, this study aims to investigate the effect of roflumilast on NAFLD. Here, we fed ob/ob mice to induce the NAFLD model by GAN diet. Roflumilast (1 mg/kg) was administered orally once daily. Semaglutide (20 nmol/kg), used as a positive control, was injected subcutaneously once daily. Our findings showed that roflumilast has beneficial effects on NAFLD. Roflumilast prevented body weight gain and improved lipid metabolism in ob/ob-GAN NAFLD mice. In addition, roflumilast decreased hepatic steatosis by down-regulating the expression of hepatic fatty acid synthesis genes (SREBP1c, FASN, and CD36) and improving oxidative stress. Roflumilast not only reduced liver injury by decreasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, but also ameliorated hepatic inflammation by reducing the gene expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6). Roflumilast lessened liver fibrosis by inhibiting the expression of fibrosis mRNA (TGFß1, α-SMA, COL1a1, and TIMP-1). Collectively, roflumilast could ameliorate NAFLD, especially in reducing hepatic steatosis and fibrosis. Our findings suggested a PDE-4 inhibitor roflumilast could be a potential drug for NAFLD.


Assuntos
Aminopiridinas , Benzamidas , Ciclopropanos , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Inibidores da Fosfodiesterase 4 , Animais , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Masculino , Camundongos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos Obesos , Estresse Oxidativo/efeitos dos fármacos , Dieta
2.
STAR Protoc ; 4(2): 102272, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37126441

RESUMO

The meninges, consisting of the pia, arachnoid, and dura layers, provide immunosurveillance of the central nervous system with both innate and adaptive immune cells. Here we present an optimized protocol for isolating dura leukocytes from neonatal and adult mice. We describe steps for harvesting the skull cap, extracting the dura mater, mechanical isolation of dura leukocytes, and flow cytometry analysis. Unlike the time-consuming enzymatic digestion isolation which makes dura hematopoietic stem cells (HSCs) undetectable, this rapid and simplified technique permits dura HSC identification. For complete details on the use and execution of this protocol, please refer to Niu et al. (2022).1.

3.
Drug Des Devel Ther ; 17: 1417-1432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197367

RESUMO

Purpose: The glucagon-like peptide-1 receptor (GLP-1R) is an effective therapeutic target for type 2 diabetes mellitus (T2DM) and non-alcoholic steatohepatitis (NASH). Research has focused on small-molecule GLP-1R agonists because of their ease of use in oral formulations and improved patient compliance. However, no small-molecule GLP-1R agonists are currently available in the market. We aimed to screen for a potential oral small-molecule GLP-1R agonist and evaluated its effect on blood glucose and NASH. Methods: The Connectivity map database was used to screen for candidate small-molecule compounds. Molecular docking was performed using SYBYL software. Rat pancreatic islets were incubated in different concentrations glucose solutions, with cinchonine or Exendin (9-39) added to determine insulin secretion levels. C57BL/6 mice, GLP-1R-/- mice and hGLP-1R mice were used to conduct oral glucose tolerance test. In addition, we fed ob/ob mice with the GAN diet to induce the NASH model. Cinchonine (50 mg/kg or 100 mg/kg) was administered orally twice daily to the mice. Serum liver enzymes were measured using biochemical analysis. Liver tissues were examined using Hematoxylin-eosin staining, Oil Red O staining and Sirius Red staining. Results: Based on the small intestinal transcriptome of geniposide, a recognized small-molecule GLP-1R agonist, we identified that cinchonine exerted GLP-1R agonist-like effects. Cinchonine had a good binding affinity for GLP-1R. Cinchonine promoted glucose-dependent insulin secretion, which could be attenuated significantly by Exendin (9-39), a specific GLP-1R antagonist. Moreover, cinchonine could reduce blood glucose in C57BL/6 and hGLP-1R mice, an effect that could be inhibited with GLP-1R knockout. In addition, cinchonine reduced body weight gain and food intake in ob/ob-GAN NASH mice dose-dependently. 100 mg/kg cinchonine significantly improved liver function by reducing the ALT, ALP and LDH levels. Importantly, 100 mg/kg cinchonine ameliorated hepatic steatosis and fibrosis in NASH mice. Conclusion: Cinchonine, a potential oral small-molecule GLP-1R agonist, could reduce blood glucose and ameliorate NASH, providing a strategy for developing small-molecule GLP-1R agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Glicemia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Simulação de Acoplamento Molecular , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Receptores de Glucagon/uso terapêutico , Camundongos Endogâmicos C57BL
4.
Exp Cell Res ; 423(2): 113471, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642263

RESUMO

Vasoactive intestinal peptide (VIP), a small neuropeptide composing of 28 amino acids, functions as a neuromodulator with insulinotropic effect on pancreatic ß cells, in which it is of vital importance in regulating the levels of blood glucose. VIP potently agonizes VPAC2 receptor (VPAC2-R). Agonists of VPAC2-R stimulate glucose-dependent insulin secretion. The purpose of this study was to further investigate the possible ion channel mechanisms in VPAC2-R-mediated VIP-potentiated insulin secretion. The results of insulin secretion experiments showed that VIP augmented insulin secretion in a glucose-dependent manner. The insulinotropic effect was mediated by VPAC2-R rather than VPAC1 receptor (VPAC1-R), through the adenylyl cyclase (AC)/protein kinase A (PKA) signalling pathway. The calcium imaging analysis demonstrated that VIP increased intracellular Ca2+ concentration ([Ca2+]i). In addition, in the whole-cell voltage-clamp mode, we found that VIP blocked the voltage-dependent potassium (Kv) channel currents, while this effect was reversed by inhibiting the VPAC2-R, AC or PKA respectively. Taken together, these findings suggest that VIP stimulates insulin secretion by inhibiting the Kv channels, activating the Ca2+ channels, and increasing [Ca2+]i through the VPAC2-R and AC/PKA signalling pathway. These findings provide theoretical basis for the research of VPAC2-R as a novel therapeutic target.


Assuntos
Células Secretoras de Insulina , Peptídeo Intestinal Vasoativo , Ratos , Animais , Peptídeo Intestinal Vasoativo/farmacologia , Receptores Tipo II de Peptídeo Intestinal Vasoativo/agonistas , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais Iônicos/metabolismo , Glucose/farmacologia
5.
Cell Rep ; 41(6): 111592, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351383

RESUMO

Steady-state extramedullary hematopoiesis during adulthood is an emerging field of great interest. The meninges contain both innate and adaptive immune cells, which provide immunosurveillance of the central nervous system (CNS). Hematopoietic progenitors that give rise to meningeal immune cells remain elusive. Here, we report that steady-state meninges of adult mice host hematopoietic stem cells (HSCs), as defined by long-term, efficient, multi-lineage reconstitution and self-renewal capacity in the meninges, blood, spleen, and bone marrow of sublethally irradiated adult recipients. HSCs lodge in the meninges after birth with local expression of pro-hematopoietic niche factors. Meningeal HSCs are locally maintained in homeostasis and get replenished from the blood only when the resident pool is reduced. With a tissue-specific expression profile, meningeal HSCs can provide the CNS with a constant supply of leukocytes more adapted to local microenvironment.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Medula Óssea , Baço , Meninges , Camundongos Endogâmicos C57BL
6.
Front Mol Biosci ; 9: 917602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203872

RESUMO

Ferroptosis is a form of non-apoptotic and iron-dependent cell death originally identified in cancer cells. Recently, emerging evidence showed that ferroptosis-targeting therapy could be a novel promising anti-tumour treatment. However, systematic analyses of ferroptosis-related genes for the prognosis of non-small cell lung cancer (NSCLC) and the development of antitumor drugs exploiting the ferroptosis process remain rare. This study aimed to identify genes related to ferroptosis and NSCLC and to initially screen lead compounds that induce ferroptosis in tumor cells. We downloaded mRNA expression profiles and NSCLC clinical data from The Cancer Genome Atlas database to explore the prognostic role of ferroptosis-related genes. Four prognosis-associated ferroptosis-related genes were screened using univariate Cox regression analysis and the lasso Cox regression analysis, which could divide patients with NSCLC into high- and low-risk groups. Then, based on differentially expressed risk- and ferroptosis-related genes, the negatively correlated lead compound flufenamic acid (FFA) was screened through the Connective Map database. This project confirmed that FFA induced ferroptosis in A549 cells and inhibited growth and migration in a dose-dependent manner through CCK-8, scratch, and immunofluorescence assays. In conclusion, targeting ferroptosis might be a therapeutic alternative for NSCLC.

7.
Front Pharmacol ; 13: 896601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046815

RESUMO

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder. But the treatment of depression remains challenging. Anti-inflammatory treatments frequently produce antidepressant effects. EPO-derived helix-B peptide ARA290 has been reported to retain the anti-inflammatory and tissue-protective functions of EPO without erythropoiesis-stimulating effects. The effects of ARA290 on MDD remain elusive. This study established chronic unpredictable mild stress and chronic social defeat stress mouse models. Daily administration of ARA290 during chronic stress induction in two mouse models ameliorated depression-like behavior, similar to fluoxetine. With marginal effects on peripheral blood hemoglobin and red cells, ARA290 and fluoxetine reversed chronic stress-induced increased frequencies and/or numbers of CD11b+Ly6Ghi neutrophils and CD11b+Ly6Chi monocytes in the bone marrow and meninges. Furthermore, both drugs reversed chronic stress-induced microglia activation. Thus, ARA290 ameliorated chronic stress-induced depression-like behavior in mice through, at least partially, its anti-inflammatory effects.

8.
Anal Sci ; 38(11): 1433-1440, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36001292

RESUMO

Ascorbic acid (AA), a critical cellular metabolite involved in many biochemical pathways, is an important antioxidant in human body. Therefore, it is of great significance to monitor AA in living cells. Nowadays, there are various technologies developed for the detection of AA, but few methods could sensitively and selectively detect the intracellular AA. Here, we reported a highly efficient biosensor (g-C3N4-CoOOH nanocomposite) based on ultrathin graphitic carbon nitride (g-C3N4) nanosheets and CoOOH nanoflakes, for sensitive detection and fluorescence imaging of AA in living cell. The g-C3N4 used here as fluorescence donor is a promising bioimaging nanomaterial because of their high fluorescence quantum yield, good biocompatibility and low toxicity. In addition, the CoOOH was used to be perfect fluorescence quencher. Herein, we enabled the CoOOH in situ to form a layer on the surface of g-C3N4, resulting in fluorescence quench of the g-C3N4. Upon the addition of AA, the CoOOH nanoflakes were reduced to Co2+, and the system gave a "turn on" fluorescence signal. It developed as an efficient sensing platform for AA, and the linear range was from 5 to 50 µM with a 1.6 µM detection limit. This novel biosensor, g-C3N4-CoOOH nanocomposite exhibited highly selective response toward AA relative to other biomolecules. Furthermore, this biosensor was used successfully to visualize and monitor AA in living cells. Hopefully, we believe that this biosensor would provide a low-cost and highly sensitive platform for AA detection and bioimaging. Schematic illustration of the sensing strategy based on the g-C3N4-CoOOH nanocomposite for AA detection.


Assuntos
Ácido Ascórbico , Nanocompostos , Humanos , Ácido Ascórbico/química , Antioxidantes , Imagem Óptica
9.
Theranostics ; 12(5): 2248-2265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265209

RESUMO

Fulminant hepatitis (FH) is a life-threatening disease with partially understood pathogenesis. It has been demonstrated that myeloid-derived suppressor cells (MDSCs) are recruited into the liver during this process, and their augmented accumulation by various strategies protects against liver injury. However, the underlying mechanism(s) remain elusive. Receptor for activated C kinase 1 (RACK1), a multi-functional scaffold protein, is highly expressed in normal liver and has been implicated in liver physiology and diseases, but the in vivo role of hepatic RACK1 in FH remains unknown. Methods: Survival curves and liver damage were monitored to investigate the in vivo role of hepatic RACK1 in FH. The liver microenvironment was explored by microarray-based transcriptome analysis, flow cytometry, immunoblotting, and immunohistochemistry. MDSCs were identified with phenotypic and functional characteristics. Functional antibodies were used to target MDSCs. Co-culture techniques were used to study the underlying mechanism(s) of protection. The interaction of RACK1 with histone deacetylase 1 (HDAC1) and the consequent effects on HDAC1 ubiquitination were analyzed. Ectopic expression of HDAC1 with recombinant adeno-associated virus serotype 8 was conducted to confirm the role of HDAC1 in the protective effects of hepatic RACK1 deficiency against FH. Post-translational modifications of RACK1 were also investigated during the induction of FH. Results: Liver-specific RACK1 deficiency rendered mice resistant to FH. RACK1-deficient livers exhibited high basal levels of chemokine (C-X-C motif) ligand 1 (CXCL1) and S100 calcium-binding protein A9 (S100A9), associated with MDSC accumulation under steady-state conditions. Targeting MDSCs with an antibody against either Gr1 or DR5 abrogated the protective effects of liver-specific RACK1 deficiency. Accumulated MDSCs inhibited inflammatory cytokine production from macrophages and enhanced IκB kinase (IKK)/NF-κB pathway activation in hepatocytes. Further investigation revealed that RACK1 maintained HDAC1 protein level in hepatocytes by direct binding, thereby controlling histone H3K9 and H3K27 acetylation at the Cxcl1 and S100a9 promoters. Ectopic expression of HDAC1 in livers with RACK1 deficiency partially reversed the augmented Cxcl1/S100a9 → MDSCs → IKK/NF-κB axis. During FH induction, RACK1 was phosphorylated at serine 110, enhancing its binding to ubiquitin-conjugating enzyme E2T and promoting its ubiquitination and degradation. Conclusion: Liver-specific RACK1 deficiency protects against FH through accelerated HDAC1 degradation and the consequent CXCL1/S100A9 upregulation and MDSC accumulation.


Assuntos
Necrose Hepática Massiva , Células Supressoras Mieloides , Animais , Calgranulina B/metabolismo , Hepatócitos/metabolismo , Necrose Hepática Massiva/metabolismo , Camundongos , Células Supressoras Mieloides/metabolismo , NF-kappa B/metabolismo , Receptores de Quinase C Ativada/metabolismo
10.
PLoS Pathog ; 17(9): e1009901, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506605

RESUMO

Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity.


Assuntos
Imunidade Inata/imunologia , Fator Regulador 7 de Interferon/imunologia , Células Mieloides/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Fator Regulador 7 de Interferon/biossíntese , Camundongos , Células Mieloides/metabolismo , Proteína NEDD8/deficiência , Processamento de Proteína Pós-Traducional , Ubiquitinas/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...