Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Public Health ; 53(3): 614-624, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38919288

RESUMO

Background: Fine particulate matter (PM2.5), an important component of ambient air pollution, induces significant adverse health effects. MitoQuinone (MitoQ), a mitochondria-targeted antioxidant, has been reported to play a protective role in various diseases. However, the roles of MitoQ in PM2.5 induced pulmonary toxicity remains to be elucidated. Methods: All the experiments were performed at Higher Educational Key Laboratory for Translational Oncology of Fujian Province, Putian City, China in 2023. Pulmonary epithelial cells (A549) were pretreated with 4 µM MitoQ for 2 h and exposed to PM2.5 for 24 h. Cell viability was tested through CCK8 assay. Oxidative stress state and active mitochondria was used to study MitoQ's effect on PM2.5 induced injury, and cell apoptosis was measured using a flow cytometer and analyzed by Bcl-2 family. Results: MitoQ pretreatment significantly relieved a decreased cell viability, subsequently, MitoQ alleviated ROS production and prevented the reduction of T-AOC and GSH and increased the expression of NF-E2-related factor 2 (Nrf2) and p62 in A549 cells exposed to PM2.5. MitoQ restored the decreased mitochondrial dysfunction and dynamics disorder and inhibited activated mitochondrial-mediated apoptosis induced by PM2.5. Furthermore, the decreased ratio of Bcl-2/Bax and expression of Mcl-1 and the enhanced expression of Caspase-3 were reversed by MitoQ pretreatment. Conclusion: MitoQ might be regarded as a potential drug to relieve PM2.5 induced pulmonary epithelial cells damage.

2.
Vaccines (Basel) ; 10(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36298468

RESUMO

Re-emerging pseudorabies (PR) caused by pseudorabies virus (PRV) variant has been prevailing among immunized herds in China since 2011, indicating that commercially available PR vaccine strains couldn't provide complete protection against novel, epidemic PRV variant. Before this study, a gE/TK-gene-deleted virus (PRV ΔgE/TK) was constructed from PRV QYY2012 variant through homologous recombination and Cre/LoxP system. Here, PRV ΔgE/TK/US3 strain was generated by deleting US3 gene based on PRV ΔgE/TK strain using the same method. The growth characteristics of PRV ΔgE/TK/US3 were analogous to that of PRV ΔgE/TK. Moreover, the deletion of US3 gene could promote apoptosis, upregulate the level of swine leukocyte antigen class I molecule (SLA-I) in vitro, and relieve inflammatory response in inoculated BALB/c mice. Subsequently, the safety and immunogenicity of PRV ΔgE/TK/US3 was evaluated as a vaccine candidate in mice. The results revealed that PRV ΔgE/TK/US3 was safe for mice, and mice vaccinated with PRV ΔgE/TK/US3 could induce a higher level of PRV-specific neutralizing antibodies and cytokines, including IFN-γ, IL-2 and IL-4, also higher level of CD8+ CD69+ Tissue-Resident Memory T cells (TRM). The results show that the deletion of US3 gene of PRV ΔgE/TK strain could induce increased immunogenicity, indicating that the PRV ΔgE/TK/US3 strain is a promising vaccine candidate for preventing and controlling of the epidemic PR in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...