Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37421086

RESUMO

A self-excited oscillating pulsed abrasive water jet polishing method is proposed to solve the problems of low removal efficiency in traditional abrasive water jet polishing and the influence of an external flow field on the material surface removal rate. The self-excited oscillating chamber of the nozzle was used to generate pulsed water jets to reduce the impact of the jet stagnation zone on material surface removal and increase the jet speed to improve processing efficiency. ANSYS Fluent was employed to simulate the processing flow field characteristics for different lengths of oscillation cavities. The simulation results indicate that the velocity of the jet shaft reached a maximum of 178.26 m/s when the length of the oscillation cavity was 4 mm. The erosion rate of the material is linear with the processing angle. A nozzle with a length of 4 mm of the self-excited oscillating cavity was fabricated for SiC surface polishing experiments. The results were compared with those of ordinary abrasive water jet polishing. The experimental results showed that the self-excited oscillation pulse fluid enhanced the erosion ability of the abrasive water jet on the SiC surface and significantly improved the material-removal depth of the abrasive water jet polishing SiC. The maximum surface erosion depth can be increased by 26 µm.

2.
Micromachines (Basel) ; 14(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374700

RESUMO

The three-body coupling grinding mode of a ball ensures the batch diameter variation and batch consistency of precision ball machining based on the principle of ball forming, resulting in a structure that is simply and feasibly controllable. The change in the rotation angle can be jointly determined using the fixed load of the upper grinding disc and the rotation speed coordination of the inner and outer discs of the lower grinding disc. Related to this, the rotation speed is an important index to guarantee grinding uniformity. To ensure the quality of three-body coupling grinding, this study aims to establish the best mathematical control model of the rotation speed curve of the inner and outer discs in the lower grinding disc. Specifically, it includes two aspects. First, the optimization of the rotation speed curve was mainly studied, and the machining process was simulated with three speed curve combinations: 1, 2, and 3. By analyzing the evaluation index of ball grinding uniformity, the results revealed that the third speed curve combination had the best grinding uniformity, and the three speed curve combinations were optimized on the basis of the traditional triangular wave speed curve. Furthermore, the obtained double trapezoidal speed curve combination not only achieved the traditionally verified stability performance but also overcame the shortcomings of the other speed curves. The mathematical model established in this way was equipped with a grinding control system, which improved the fine control ability of the rotation angle state of the ball blank under the three-body coupling grinding mode. It also obtained the best grinding uniformity and sphericity and laid a theoretical foundation for achieving a grinding effect that was close to the ideal circumstance during mass production. Second, via theoretical comparison and analysis, it was determined that the ball shape and sphericity deviation (SPD) were more accurate than the standard deviation (STD) of the two-dimensional trajectory point distribution. The SPD evaluation method was also investigated via the optimization analysis of the rotation speed curve by means of the ADAMAS simulation. The obtained results coincided with the STD evaluation trend, thus laying a preliminary foundation for subsequent applications.

3.
Micromachines (Basel) ; 14(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677261

RESUMO

In this study, in order to improve and restore the performance of the polishing pads and reduce the cost of chemical mechanical polishing, three types of material polishing pads, namely, polyurethane, damping cloth, and non-woven fabric, were selected for the experiment. Accordingly, each polishing pad was set up with diamond conditioner and high-pressure micro-jet (HPMJ) conditioning control experiments. Subsequently, the fluctuation ranges of the material removal rate on the three polishing pads were 2.73-3.75 µm/h, 1.38-1.99 µm/h, and 2.36-4.32 µm/h, respectively under the HPMJ conditioning method, while the fluctuation ranges of the material removal rate on the three polishing pads were 1.80-4.14 µm/h, 1.02-2.09 µm/h, and 1.78-5.88 µm/h under the diamond conditioning method. Comparing the polishing pad morphologies under SEM, we observed that the surface of the polishing pad after HPMJ conditioning was relatively clean, and the hole structure was not blocked. Contrastingly, there remained numerous abrasive particles on the surface after the conventional diamond conditioning and the hole structure was blocked. Thus, the HPMJ conditioning technology is better than the traditional diamond conditioning technology. Subsequently, the polishing pad after HPMJ conditioning has a longer service life and a more stable material removal rate than that after traditional diamond conditioning.

4.
Micromachines (Basel) ; 13(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295984

RESUMO

Reasonable cutting edge preparation can eliminate microscopic defects and improve the performance of a cutting tool. The flexible fiber-assisted shear thickening polishing method was used for the preparation of cemented carbide insert cutting edge. The influences of the polishing angle and polishing speed on the cutting edge preparation process were investigated, and the cutting edge radius and K-factor were employed as evaluation indexes to evaluate the edge shape. A prediction model of the cutting edge radius was also established using the mathematical regression method. The results show that the polishing angle has a more significant effect on the cutting edge radius. The cutting edge preparation efficiency is the highest under the polishing angle of 10°, and the cutting edge radius increased from the 15 ± 2 µm to 110 ± 5 µm in 5 min. The cutting edge shape can be controlled by adjusting the polishing angle, and the K-factor varies from 0.14 ± 0.03 to 0.56 ± 0.05 under the polishing angle (from -20° to 20°). The polishing speed has a less effect on the cutting edge radius and shape, but increasing the polishing speed within a certain range can improve the efficiency of cutting edge preparation. The flank face roughness decreased from the initial Ra 163.1 ± 10 nm to Ra 5.2 ± 2 nm at the polishing angle of -20°, which is the best polishing angle for the flank face surface roughness. The ANOVA method was employed to evaluate the effective weight of the polishing angle and polishing speed on preparation efficiency. The polishing angle (86.79%) has the more significant influence than polishing speed (13.21%) on the cutting edge preparation efficiency. The mathematical regression method was used to establish the model of the prediction of the cutting edge radius with polishing angle and speed, and the models were proved rationally. The results indicate that the FF-STP is an effective method for the high consistency preparation of cemented carbide insert cutting edge.

5.
Micromachines (Basel) ; 13(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35457840

RESUMO

KDP crystals constitute the only laser-frequency conversion and electro-optical switches that can be used in laser systems for inertial confinement fusion. However, KDP crystals are difficult to produce because of their inherent softness, brittleness, water-solubility, and temperature sensitivity. The authors' group developed a water-dissolution polishing method in previous studies to obtain near-damage-free KDP surfaces. In this article, the effect of the wetting characteristics of the water dissolution polishing fluid on the crystal surface-a factor rarely considered in the usual process optimization-on the polished surface quality was comprehensively studied. The mean radius of micro water droplets at 5 wt.% and 7.5 wt.% water content was approximately 0.6 nm and 1.2 nm, respectively. Theoretically, the smaller micro water droplet size is beneficial to the polished surface quality. When the water content was 5 wt.%, due to the poor wetting characteristics of the polishing fluid, surface scratches appeared on the polished surface; when the water content was 7.5 wt.%, the effects of the wetting characteristics and the radius of the micro water droplets reached a balance, and the polished surface quality was the best (Ra 1.260 nm). These results confirm that the wetting characteristics of the polishing fluid constitute one of the key factors that must be considered. This study proves that the wetting characteristics of the polishing fluid should be improved during the optimization process of polishing fluid composition when using oil-based polishing fluids for ultra-precision polishing.

6.
Micromachines (Basel) ; 11(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471163

RESUMO

Silicon wafer with high surface quality is widely used as substrate materials in the fields of micromachines and microelectronics, so a high-efficiency and high-quality polishing method is urgently needed to meet its large demand. In this paper, a dielectrophoresis polishing (DEPP) method was proposed, which applied a non-uniform electric field to the polishing area to slow down the throw-out effect of centrifugal force, thereby achieving high-efficiency and high-quality polishing of silicon wafers. The principle of DEPP was described. Orthogonal experiments on important polishing process parameters were carried out. Contrast polishing experiments of silicon wafer were conducted. The orthogonal experimental results showed that the influence ratio of electric field intensity and rotation speed on material removal rate (MRR) and surface roughness was more than 80%. The optimal combination of process parameters was electric field intensity 450 V/mm, rotation speed 90 rpm, abrasive concentration 30 wt%, size of abrasive particle 80 nm. Contrast polishing experiments indicated that the MRR and material removal uniformity of DEPP were significantly better than traditional chemical mechanical polishing (CMP). Compared with the traditional CMP, the MRR of DEPP was increased by 17.6%, and the final surface roughness of silicon wafer reached Ra 0.31nm. DEPP can achieve high-efficiency and high-quality processing of silicon wafer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...