Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(9): 1486-1497, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33893396

RESUMO

Non-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial-mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed ß-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of ß-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of ß-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing ß-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diterpenos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fenantrenos/farmacologia , beta Catenina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Compostos de Epóxi/farmacologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , beta Catenina/genética
2.
J Ethnopharmacol ; 154(1): 240-8, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24746484

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cuscuta chinensis seeds have traditionally been used to treat freckles and melasma in Asia, although recent reports have revealed that Semen cuscutae is a promoter of melanogenesis. The present study aims to investigate the mechanism of this opposite effect of Semen cuscutae on melanogenesis. MATERIALS AND METHODS: In accordance with traditional usage, the water fraction and the ethanol fraction from Semen cuscutae (WFSC/EFSC) were extracted to determine the herbal effects by examining the activity of mushroom tyrosinase, cellular melanin contents, tyrosinase activity assay, quantitative-reverse transcription polymerase chain reaction (qRT-PCR), and Western blot analysis for tyrosinase in B16F10 mouse melanoma cells. The melanocyte phenotypes of zebrafish larvae were observed while the in vivo melanin contents and tyrosinase activity were determined. RESULTS: The activity of mushroom tyrosinase assay shown that WFSC was an uncompetitive inhibitor of mushroom tyrosinase, while EFSC indicated dose-dependent activation of the mushroom tyrosinase activity. The WFSC markedly inhibited 3-isobutyl-1-methylxanthine (IBMX)-stimulated melanin synthesis and tyrosinase activity in vitro. Howeveran accelerant role in melanin synthesis and tyosinase activity. Neither fraction had any effect on the IBMX-induced expression of tyrosinase protein or mRNA. The WFSC strongly inhibited melanin synthesis and cellular tyrosinase activity in vivo. Furthermore, with the function of WFSC at a higher concentration, a punctate melanocyte pattern appeared that was similar to the pattern induced by arbutin or Mequinol (MQ). The EFSC had no effect on the melanocytes of zebrafish larvae. It was discovered that WFSC did not show a stable inhibitory effect until it was extracted 1 month later. CONCLUSIONS: These results suggest that the opposite effects of Cuscuta chinensis seeds were caused by the extraction methods and that time has an important role on the effect of WFSC. Both WFSC and EFSC significantly influence melanogenesis by regulating enzymatic activity of tyrosinase. In addition, the data indicate that wildtype (WT) zebrafish may be an ideal model for testing inhibitors of melanogenesis from clinically active herbs.


Assuntos
Cuscuta , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Sementes/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Etanol/química , Larva , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma Experimental , Camundongos , Solventes/química , Água/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...