Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 236(4): 3015-3032, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960454

RESUMO

Glucagon-like peptide-2 (GLP-2), an intestinotrophic hormone, has drawn considerable attention worldwide due to its potential to promote intestinal development. We investigated the effects and mechanisms of GLP-2 against lipopolysaccharide (LPS)-induced intestinal inflammation and injury both in vitro and in vivo. Forty healthy piglets weaned at the age of 28 days with similar body weight (BW) were assigned to four in vivo treatments with ten piglets each: (i) nonchallenged control; (ii) LPS-challenged control; (iii) LPS + low dose GLP-2; and (iv) LPS + high dose GLP-2. Piglets were subcutaneously injected with phosphate-buffered saline supplemented with GLP-2 at doses of 0, 0, 2, and 10 nmol/kg BW per day for seven consecutive days. The piglets were challenged with an intraperitoneal injection with 100 µg/kg LPS on day 14 to induce intestinal damage. After that, the gene and protein expression levels of representative tight junction proteins and myosin light-chain kinase (MLCK)/phosphorylated myosin light chain (pMLC), as well as proinflammatory cytokine levels were determined using quantitative reverse transcription polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay methods. A high dose of GLP-2 pretreatment increased intestinal permeability by downregulating and redistributing tight junction proteins (p < .05), for example, zona occluden-1 (ZO-1) and occludin. GLP-2 decreased the transcription of proinflammatory cytokines genes including interleukin-1ß (IL-1ß), IL-6, IL-8, and tumor necrosis factor-α in small intestines (p < .05). GLP-2 prevented the LPS-induced increase in the expression of MLCK dose-dependently and the increase in pMLC levels in the duodenum, jejunum, and ileum. To assess further the protective effect of GLP-2 on LPS-induced intestinal barrier injury after weaning and its possible mechanism, an in vitro intestinal epithelial barrier model was established with IPEC-J2 monolayers and treated with 100 µg/ml LPS with or without 1 × 10-8 mol/L GLP-2 pretreatment. The in vitro analysis included control, LPS, and GLP-2 + LPS treatments. GLP-2 treatment alleviated the destructive effect of LPS on barrier permeability by restoring the expression and ultrastructure of ZO-1 and occludin (p < .05). In addition, GLP-2 reversed the LPS-induced MLCK hyperexpression and pMLC hyperphosphorylation (p < .05). Taken together, our findings revealed a mechanism by which GLP-2 alleviated LPS-challenged intestinal barrier injury and inflammation in weaned piglets and IPEC-J2 cells via the MLCK/pMLC signaling pathway.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/farmacologia , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Transdução de Sinais , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/sangue , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Mediadores da Inflamação/sangue , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Ácido Láctico/sangue , Lipopolissacarídeos/sangue , Modelos Biológicos , Permeabilidade , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Suínos , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/ultraestrutura , Desmame
2.
ACS Appl Bio Mater ; 2(5): 2202-2207, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35030659

RESUMO

ZnO nanoparticles (ZnONPs) are synthesized and incorporated into soybean protein isolate (SPI) to obtain SPI/ZnONPs (SZ) films, and the morphology, size distribution, and stability are determined. The effects of different contents of ZnONPs in the SZ films on the oxygen barrier, antibacterial activity, and thermal and mechanical properties are evaluated. A ZnONPs content of 0.2% in the SZ films improves the tensile strength and microbial inhibition by 231% and 16%, respectively. The thermal stability and oxygen barrier properties of the SZ films are also enhanced with addition of ZnONPs. The ZnONPs dispersed uniformly in the SPI film enhance the interactions between SPI molecules via hydrogen bonding, and the results suggest potential application of ZnONPs in food packaging.

3.
Asian-Australas J Anim Sci ; 29(5): 731-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26954146

RESUMO

Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 µg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ's expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

4.
Asian-Australas J Anim Sci ; 27(5): 733-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25050009

RESUMO

The glucagon-like peptide 2 (GLP-2) that is expressed in intestine epithelial cells of mammals, is important for intestinal barrier function and regulation of tight junction (TJ) proteins. However, there is little known about the intracellular mechanisms of GLP-2 in the regulation of TJ proteins in piglets' intestinal epithelial cells. The purpose of this study is to test the hypothesis that GLP-2 regulates the expressions of TJ proteins in the mitogen-activated protein kinase (MAPK) signaling pathway in piglets' intestinal epithelial cells. The jejunal tissues were cultured in a Dulbecco's modified Eagle's medium/high glucose medium containing supplemental 0 to 100 nmol/L GLP-2. At 72 h after the treatment with the appropriate concentrations of GLP-2, the mRNA and protein expressions of zonula occludens-1 (ZO-1), occludin and claudin-1 were increased (p<0.05). U0126, an MAPK kinase inhibitor, prevented the mRNA and protein expressions of ZO-1, occludin, claudin-1 increase induced by GLP-2 (p<0.05). In conclusion, these results indicated that GLP-2 could improve the expression of TJ proteins in weaned pigs' jejunal epithelium, and the underlying mechanism may due to the MAPK signaling pathway.

5.
Z Naturforsch C J Biosci ; 64(11-12): 875-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20158161

RESUMO

A new full-length beta-carbonic anhydrase cDNA was obtained from Brassica napus by homologous cloning. The cDNA has an open-reading frame of 996 nucleotides, encoding 331 amino acids with a calculated molecular weight of 35,692 Da and an estimated pI value of 5.459. The deduced amino acid sequence of beta-carbonic anhydrase from Brassica napus shared significant identity with beta-carbonic anhydrases from Brassica carinata, Arabidopsis thaliana, and Thlaspi caerulescens (97.9%, 94%, and 93.5% identity, respectively). This cDNA was expressed in Escherichia coli BL21 (DE3) using the expression vector pET-32a(+). The expression band corresponded to the calculated mass plus the N-terminal fusion protein derived from the vector.


Assuntos
Brassica napus/enzimologia , Anidrases Carbônicas/genética , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos , Sequência de Bases , Brassica napus/classificação , Brassica napus/genética , Clonagem Molecular , Primers do DNA , DNA Complementar/genética , DNA de Plantas/genética , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Plantas/classificação , Plantas/enzimologia , Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
6.
J Genet Genomics ; 34(3): 196-213, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17498617

RESUMO

Mitotic metaphase chromosomes of 34 species of Drosophila melanogaster species group were examined. Certain new karyotypes were described for the first time, and their evolutionary and interspecific genetic relationships among 8 subgroups of D. melanogaster species group were analyzed systematically. The results were as follows. The basic karyotype of elegans subgroup was type A. The karyotypes of eugracilis subgroup, melanogaster subgroup, and ficusphila subgroup were all type C. The karyotypes of takahashii subgroup and suzukii subgroup were both type C and type D. The montium subgroup had six kinds of karyotypes: types B, C, C', D, D', and E. The ananassae subgroup had three kinds of karyotypes: types F, G, and H. Thus, the melanogaster species group was classified into five pedigrees based on the diversity of these karyotypes: 1) elegans; 2) eugracilis-melanogaster-ficusphila; 3) takkahashii-suzukii; 4) montium; 5) ananassae. The above-mentioned results in karyotypic evolution were consistent with those of DNA sequence analysis reported by Yang except for the elegans subgroup and this subgroup was considered as the ancestral subgroup. Karyotype analysis of the same drosophila from different isofemale lines indicated that the same Drosophila from different places showed karyotypic variation which might be due to different geographical environment and evolutionary degree or interaction between the two factors.


Assuntos
Evolução Biológica , Drosophila melanogaster/genética , Cariotipagem , Animais , Mapeamento Cromossômico , Proteínas de Drosophila/genética , Drosophila melanogaster/classificação , Geografia , Heterocromatina , Filogenia , Cromossomo X , Cromossomo Y
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...