Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 257: 121708, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723355

RESUMO

The ammonia recovery from wastewater via electrochemical technologies represents a promising way for wastewater treatment, resource recovery, and carbon emissions reduction. However, chemicals consumption and reactors scalability of the existing electrochemical systems have become the key challenges for their development and application. In this study, a stacked transmembrane electro-chemisorption (sTMECS) system was developed to utilize authigenic acid and base on site for enhancing ammonia recovery from wastewater. The easily scaled up system was achieved via innovatively connecting the cathode chamber in a unit with the anode chamber in the adjacent unit by a hydrophobic gas permeable membrane (GPM). Thus, authigenic base at cathodes and authigenic acid at anodes could be utilized as stripper and absorbent on site to enhance the transmembrane chemisorption of ammonia. Continuous power supply, reducing the distances of electrodes to GPM and moderate aeration of the catholyte could promote ammonia recovery. Applied to the ammonia recovery from the simulated urine, the sTMECS under the current density 62.5 A/cm2 with a catholyte aeration rate of 3.2 L/(L⋅min) for operation time 4 h showed the transmembrane ammonia flux of 26.00 g N/(m2·h) and the system energy consumption of 10.5 kWh/kg N. Accordingly, the developed sTMECS system with chemicals saving, easy scale-up and excellent performance shows good prospects in recovering ammonia from wastewater.


Assuntos
Amônia , Interações Hidrofóbicas e Hidrofílicas , Águas Residuárias , Águas Residuárias/química , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Eletrodos , Técnicas Eletroquímicas , Purificação da Água/métodos
2.
Chemosphere ; 257: 127283, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32531492

RESUMO

The coming global phosphorus (P) crisis makes P recovery from wastewater become an inevitable choice. Hydroxyapatite (HAP) crystallization is an important approach for P recovery, but its requirements for high alkali and acid are unaffordable. Thus, a microbial electrolysis phosphorus-recovery cell (MEPRC) was developed to cut down the alkali cost via raising the wastewater pH (over 11) in the cathode chamber, and the acid cost via producing acid in the acid-production chamber. HAP was confirmed to be the final recovered products, and P recovery efficiency over 80% was achieved at 24-h operation. To optimize the P recovery performance of this system, the effects of the key factors including applied voltage, P initial concentration and Ca/P ration were investigated. High voltage could promote the rate of P recovery but had slight effect on the eventual recovery efficiency (elevated from 88.5 to 91.1%). High P initial concentration (15.0 mM) could slow down the pH elevation, contributing to the low P recovery efficiency (50.1%) within 24 h. However, prolonging the operation could break the buffering and obtain a satisfactory P recovery efficiency (87.2%) at 36 h. Besides, sufficient calcium ions were favorable to the P recovery. In addition, P recovery cost analyses of the MEPRC indicated that it might be a low-cost technology for P recovery. Moreover, the simultaneously produced acid could be used to neutralize the effluent after P recovery with high pH value. These results demonstrate the feasibility of MEPRC for cost-effective P recovery from wastewater.


Assuntos
Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Eletrodos , Eletrólise , Concentração de Íons de Hidrogênio , Fósforo/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...