Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526980

RESUMO

Partial, frustrated synchronization, and chimera-like states are expected to occur in Kuramoto-like models if the spectral dimension of the underlying graph is low: ds<4. We provide numerical evidence that this really happens in the case of the high-voltage power grid of Europe (ds<2), a large human connectome (KKI113) and in the case of the largest, exactly known brain network corresponding to the fruit-fly (FF) connectome (ds<4), even though their graph dimensions are much higher, i.e., dgEU≃2.6(1) and dgFF≃5.4(1), dgKKI113≃3.4(1). We provide local synchronization results of the first- and second-order (Shinomoto) Kuramoto models by numerical solutions on the FF and the European power-grid graphs, respectively, and show the emergence of chimera-like patterns on the graph community level as well as by the local order parameters.

2.
Biomedicines ; 11(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37189611

RESUMO

With the development of society, the incidence of dementia and type 2 diabetes (T2DM) in the elderly has been increasing. Although the correlation between T2DM and mild cognitive impairment (MCI) has been confirmed in the previous literature, the interaction mechanism remains to be clarified. To explore the co-pathogenic genes in the blood of MCI and T2DM patients, clarify the correlation between T2DM and MCI, achieve the purpose of early disease prediction, and provide new ideas for the prevention and treatment of dementia. We downloaded T2DM and MCI microarray data from GEO databases and identified the differentially expressed genes associated with MCI and T2DM. We obtained co-expressed genes by intersecting differentially expressed genes. Then, we performed GO and KEGG enrichment analysis of co-DEGs. Next, we constructed the PPI network and found the hub genes in the network. By constructing the ROC curve of hub genes, the most valuable genes for diagnosis were obtained. Finally, the correlation between MCI and T2DM was clinically verified by means of a current situation investigation, and the hub gene was verified by qRT-PCR. A total of 214 co-DEGs were selected, 28 co-DEGs were up-regulated, and 90 co-DEGs were down-regulated. Functional enrichment analysis showed that co-DEGs were mainly enriched in metabolic diseases and some signaling pathways. The construction of the PPI network identified the hub genes in MCI and T2DM co-expression genes. We identified nine hub genes of co-DEGs, namely LNX2, BIRC6, ANKRD46, IRS1, TGFB1, APOA1, PSEN1, NPY, and ALDH2. Logistic regression analysis and person correlation analysis showed that T2DM was correlated with MCI, and T2DM increased the risk of cognitive impairment. The qRT-PCR results showed that the expressions of LNX2, BIRC6, ANKRD46, TGFB1, PSEN1, and ALDH2 were consistent with the results of bioinformatic analysis. This study screened the co-expressed genes of MCI and T2DM, which may provide new therapeutic targets for the diagnosis and treatment of diseases.

3.
Heliyon ; 9(3): e14653, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994393

RESUMO

Background: Alzheimer's disease (AD), type 2 diabetes mellitus (T2DM), and Major Depressive Disorder (MDD) have a higher incidence rate in modern society. Although increasing evidence supports close associations between the three, the mechanisms underlying their interrelationships remain elucidated. Objective: The primary purpose is to explore the shared pathogenesis and the potential peripheral blood biomarkers for AD, MDD, and T2DM. Methods: We downloaded the microarray data of AD, MDD, and T2DM from the Gene Expression Omnibus database and constructed co-expression networks by Weighted Gene Co-Expression Network Analysis to identify differentially expressed genes. We took the intersection of differentially expressed genes to obtain co-DEGs. Then, we performed GO and KEGG enrichment analysis on the common genes in the AD, MDD, and T2DM-related modules. Next, we utilized the STRING database to find the hub genes in the protein-protein interaction network. ROC curves were constructed for co-DEGs to obtain the most diagnostic valuable genes and to make drug predictions against the target genes. Finally, we conducted a present condition survey to verify the correlation between T2DM, MDD and AD. Results: Our findings indicated 127 diff co-DEGs, 19 upregulated co-DEGs, and 25 down-regulated co-DEGs. Functional enrichment analysis showed co-DEGs were mainly enriched in signaling pathways such as metabolic diseases and some neurodegeneration. Protein-protein interaction network construction identified hub genes in AD, MDD and T2DM shared genes. We identified seven hub genes of co-DEGs, namely, SMC4, CDC27, HNF1A, RHOD, CUX1, PDLIM5, and TTR. The current survey results suggest a correlation between T2DM, MDD and dementia. Moreover, logistic regression analysis showed that T2DM and depression increased the risk of dementia. Conclusion: Our work identified common pathogenesis of AD, T2DM, and MDD. These shared pathways might provide novel ideas for further mechanistic studies and hub genes that may serve as novel therapeutic targets for diagnosing and treating.

4.
Biomedicines ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830783

RESUMO

Diabetes mellitus (DM) is known to be a risk factor for dementia, especially in the elderly population, and close associations between diabetes and Alzheimer disease (AD) have been determined. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists are insulin-sensitising drugs. In addition to their anti-diabetic properties, their effectiveness in preventing and decreasing cognitive impairment are the most recent characteristics that have been studied. For this study, we conducted a systematic review and meta-analysis to critically analyse and evaluate the existing data on the effects of PPAR-γ agonist therapy on the cognitive status of patients. For this purpose, we first analysed both early intervention and later treatment with PPAR-γ agonists, according to the disease status. The involved studies indicated that early PPAR-γ agonist intervention is beneficial for patients and that high-dose PPAR-γ therapy may have a better clinical effect, especially in reversing the effects of cognitive impairment. Furthermore, the efficacy of pioglitazone (PIO) seems to be promising, particularly for patients with comorbid diabetes. PIO presented a better clinical curative effect and safety, compared with rosiglitazone (RSG). Thus, PPAR-γ agonists play an important role in the inflammatory response of AD or DM patients, and clinical therapeutics should focus more on relevant metabolic indices.

5.
Phys Rev E ; 107(1-1): 014303, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797889

RESUMO

The critical behavior of the nondiffusive susceptible-infected-recovered model on lattices had been well established in virtue of its duality symmetry. By performing simulations and scaling analyses for the diffusive variant on the two-dimensional lattice, we show that diffusion for all agents, while rendering this symmetry destroyed, constitutes a singular perturbation that induces asymptotically distinct dynamical and stationary critical behavior from the nondiffusive model. In particular, the manifested crossover behavior in the effective mean-square radius exponents reveals that slow crossover behavior in general diffusive multispecies reaction systems may be ascribed to the interference of multiple length scales and timescales at early times.

6.
Entropy (Basel) ; 25(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673304

RESUMO

The second-order Kuramoto equation describes the synchronization of coupled oscillators with inertia, which occur, for example, in power grids. On the contrary to the first-order Kuramoto equation, its synchronization transition behavior is significantly less known. In the case of Gaussian self-frequencies, it is discontinuous, in contrast to the continuous transition for the first-order Kuramoto equation. Herein, we investigate this transition on large 2D and 3D lattices and provide numerical evidence of hybrid phase transitions, whereby the oscillator phases θi exhibit a crossover, while the frequency is spread over a real phase transition in 3D. Thus, a lower critical dimension dlO=2 is expected for the frequencies and dlR=4 for phases such as that in the massless case. We provide numerical estimates for the critical exponents, finding that the frequency spread decays as ∼t-d/2 in the case of an aligned initial state of the phases in agreement with the linear approximation. In 3D, however, in the case of the initially random distribution of θi, we find a faster decay, characterized by ∼t-1.8(1) as the consequence of enhanced nonlinearities which appear by the random phase fluctuations.

7.
Chin Med J (Engl) ; 136(6): 666-675, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35830275

RESUMO

ABSTRACT: The glucose metabolism is crucial for sustained brain activity as it provides energy and is a carbon source for multiple biomacromolecules; glucose metabolism decreases dramatically in Alzheimer's disease (AD) and may be a fundamental cause for its development. Recent studies reveal that the alternative splicing events of certain genes effectively regulate several processes in glucose metabolism including insulin receptor, insulin-degrading enzyme, pyruvate kinase M, receptor for advanced glycation endproducts, and others, thereby, influencing glucose uptake, glycolysis, and advanced glycation end-products-mediated signaling pathways. Indeed, the discovery of aberrant alternative splicing that changes the proteomic diversity and protein activity in glucose metabolism has been pivotal in our understanding of AD development. In this review, we summarize the alternative splicing events of the glucose metabolism-related genes in AD pathology and highlight the crucial regulatory roles of splicing factors in the alternative splicing process. We also discuss the emerging therapeutic approaches for targeting splicing factors for AD treatment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteômica , Glucose/metabolismo , Fatores de Processamento de RNA/metabolismo
8.
Front Aging Neurosci ; 14: 1024415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570535

RESUMO

Background: The many studies revealing a connection between serum uric acid (SUA) and dementia have reported conflicting results. This study sought to investigate the relations between SUA and cognitive function in older adults. Materials and methods: The sample was 2,767 American adults aged ≥60 years from the National Health and Nutrition Examination Survey 2011-2014. Cognitive performance was evaluated by the Consortium to Establish a Registry for Alzheimer's Disease test, animal fluency test, digit symbol substitution test, and composite z-score. Multivariate linear regression analyses were conducted to estimate the association between SUA and cognitive function. Results: SUA level and cognitive function were significantly, positively correlated. Age significantly correlated with the association between SUA and cognitive function. Conclusion: These findings support a connection between SUA and cognition, showing a positive link between SUA and cognitive scores among older American adults. We contend that a slight rise in uric acid within the normal range is advantageous for enhanced cognition. To confirm the precise dose-time-response relation, more tests will be needed.

9.
Sci Rep ; 12(1): 19728, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396692

RESUMO

The pair-contact process with diffusion (PCPD), a generalized model of the ordinary pair-contact process (PCP) without diffusion, exhibits a continuous absorbing phase transition. Unlike the PCP, whose nature of phase transition is clearly classified into the directed percolation (DP) universality class, the model of PCPD has been controversially discussed since its infancy. To our best knowledge, there is so far no consensus on whether the phase transition of the PCPD falls into the unknown university classes or else conveys a new kind of non-equilibrium phase transition. In this paper, both unsupervised and supervised learning are employed to study the PCPD with scrutiny. Firstly, two unsupervised learning methods, principal component analysis (PCA) and autoencoder, are taken. Our results show that both methods can cluster the original configurations of the model and provide reasonable estimates of thresholds. Therefore, no matter whether the non-equilibrium lattice model is a random process of unitary (for instance the DP) or binary (for instance the PCP), or whether it contains the diffusion motion of particles, unsupervised learning can capture the essential, hidden information. Beyond that, supervised learning is also applied to learning the PCPD at different diffusion rates. We proposed a more accurate numerical method to determine the spatial correlation exponent [Formula: see text], which, to a large degree, avoids the uncertainty of data collapses through naked eyes.


Assuntos
Aprendizado de Máquina , Humanos , Difusão , Transição de Fase , Análise de Componente Principal
10.
Phys Rev E ; 106(3-1): 034311, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266845

RESUMO

Dynamical simulation of the cascade failures on the Europe and United States (U.S.) high-voltage power grids has been done via solving the second-order Kuramoto equation. We show that synchronization transition happens by increasing the global coupling parameter K with metasatble states depending on the initial conditions so that hysteresis loops occur. We provide analytic results for the time dependence of frequency spread in the large-K approximation and by comparing it with numerics of d=2,3 lattices, we find agreement in the case of ordered initial conditions. However, different power-law (PL) tails occur, when the fluctuations are strong. After thermalizing the systems we allow a single line cut failure and follow the subsequent overloads with respect to threshold values T. The PDFs p(N_{f}) of the cascade failures exhibit PL tails near the synchronization transition point K_{c}. Near K_{c} the exponents of the PLs for the U.S. power grid vary with T as 1.4≤τ≤2.1, in agreement with the empirical blackout statistics, while on the Europe power grid we find somewhat steeper PLs characterized by 1.4≤τ≤2.4. Below K_{c}, we find signatures of T-dependent PLs, caused by frustrated synchronization, reminiscent of Griffiths effects. Here we also observe stability growth following the blackout cascades, similar to intentional islanding, but for K>K_{c} this does not happen. For T

11.
Phys Rev E ; 105(6-1): 064139, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854588

RESUMO

The latest advances of statistical physics have shown remarkable performance of machine learning in identifying phase transitions. In this paper, we apply domain adversarial neural network (DANN) based on transfer learning to studying nonequilibrium and equilibrium phase transition models, which are percolation model and directed percolation (DP) model, respectively. With the DANN, only a small fraction of input configurations (two-dimensional images) needs to be labeled, which is automatically chosen, to capture the critical point. To learn the DP model, the method is refined by an iterative procedure in determining the critical point, which is a prerequisite for the data collapse in calculating the critical exponent ν_{⊥}. We then apply the DANN to a two-dimensional site percolation with configurations filtered to include only the largest cluster which may contain the information related to the order parameter. The DANN learning of both models yields reliable results which are comparable to the ones from Monte Carlo simulations. Our study also shows that the DANN can achieve quite high accuracy at much lower cost, compared to the supervised learning.

12.
Phys Rev E ; 104(5-1): 054144, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942699

RESUMO

It recently has been found that methods of the statistical theories of spectra can be a useful tool in the analysis of spectra far from levels of Hamiltonian systems. The purpose of the present study is to deepen this kind of approach by performing a more comprehensive spectral analysis that measures both the local- and long-range statistics. We have found that, as a common feature, spectra of this kind can exhibit a situation in which local statistics are relatively quenched while the long-range ones show large fluctuations. By combining three extensions of the standard random matrix theory (RMT) and considering long spectra, we demonstrate that this phenomenon occurs when disorder and level incompleteness are introduced in an RMT spectrum. Consequently, the long-range statistics follow Taylor's law, suggesting the presence of a fluctuation scaling (FS) mechanism in this kind of spectra. Applications of the combined ensemble are then presented for spectra originate from several very diverse areas, including complex networks, COVID-19 time series, and quantitative linguistics, which demonstrate that short- and long-range statistics reflect the rigid and elastic characteristics of a given spectrum, respectively. These observations may shed some light on spectral data classification.

13.
Phys Rev E ; 103(5-1): 052140, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134215

RESUMO

Machine learning (ML) has been well applied to studying equilibrium phase transition models by accurately predicating critical thresholds and some critical exponents. Difficulty will be raised, however, for integrating ML into nonequilibrium phase transitions. The extra dimension in a given nonequilibrium system, namely time, can greatly slow down the procedure toward the steady state. In this paper we find that by using some simple techniques of ML, non-steady-state configurations of directed percolation (DP) suffice to capture its essential critical behaviors in both (1+1) and (2+1) dimensions. With the supervised learning method, the framework of our binary classification neural networks can identify the phase transition threshold, as well as the spatial and temporal correlation exponents. The characteristic time t_{c}, specifying the transition from active phases to absorbing ones, is also a major product of the learning. Moreover, we employ the convolutional autoencoder, an unsupervised learning technique, to extract dimensionality reduction representations and cluster configurations of (1+1) bond DP. It is quite appealing that such a method can yield a reasonable estimation of the critical point.

14.
Sci Rep ; 11(1): 130, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420154

RESUMO

Once an epidemic outbreak has been effectively contained through non-pharmaceutical interventions, a safe protocol is required for the subsequent release of social distancing restrictions to prevent a disastrous resurgence of the infection. We report individual-based numerical simulations of stochastic susceptible-infectious-recovered model variants on four distinct spatially organized lattice and network architectures wherein contact and mobility constraints are implemented. We robustly find that the intensity and spatial spread of the epidemic recurrence wave can be limited to a manageable extent provided release of these restrictions is delayed sufficiently (for a duration of at least thrice the time until the peak of the unmitigated outbreak) and long-distance connections are maintained on a low level (limited to less than five percent of the overall connectivity).


Assuntos
COVID-19/prevenção & controle , Distanciamento Físico , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Epidemias , Humanos
15.
Phys Rev E ; 102(4-1): 042126, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212676

RESUMO

The contact process with diffusion (PCPD) defined by the binary reactions B+B→B+B+B, B+B→∅ and diffusive particle spreading exhibits an unusual active to absorbing phase transition whose universality class has long been disputed. Multiple studies have indicated that an explicit account of particle pair degrees of freedom may be required to properly capture this system's effective long-time, large-scale behavior. We introduce a two-species representation for the PCPD in which single particles B and particle pairs A are dynamically coupled according to the stochastic reaction processes B+B→A, A→A+B, A→∅, and A→B+B, with each particle type diffusing independently. Mean-field analysis reveals that the phase transition of this model is driven by competition and balance between the two species. We employ Monte Carlo simulations in one, two, and three dimensions to demonstrate that this model consistently captures the pertinent features of the PCPD. In the inactive phase, A particles rapidly go extinct, effectively leaving the B species to undergo pure diffusion-limited pair annihilation kinetics B+B→∅. At criticality, both A and B densities decay with the same exponents (within numerical errors) as the corresponding order parameters of the original PCPD, and display mean-field scaling above the upper critical dimension d_{c}=2. In one dimension, the critical exponents for the B species obtained from seed simulations also agree well with previously reported exponent value ranges. We demonstrate that the scaling properties of consecutive particle pairs in the PCPD are identical with that of the A species in the coupled model. This two-species picture resolves the conceptual difficulty for seed simulations in the original PCPD and naturally introduces multiple length scales and timescales to the system, which are also the origin of strong corrections to scaling. The extracted moment ratios from our simulations indicate that our model displays the same temporal crossover behavior as the PCPD, which further corroborates its full dynamical equivalence with our coupled model.

16.
Phys Rev E ; 95(4-1): 042306, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505784

RESUMO

We study extensively the forget-remember mechanism (FRM) for message spreading, originally introduced in Eur. Phys. J. B 62, 247 (2008)EPJBFY1434-602810.1140/epjb/e2008-00139-4. The freedom of specifying forget-remember functions governing the FRM can enrich the spreading dynamics to a very large extent. The master equation is derived for describing the FRM dynamics. By applying the mean field techniques, we have shown how the steady states can be reached under certain conditions, which agrees well with the Monte Carlo simulations. The distributions of forget and remember times can be explicitly given when the forget-remember functions take linear or exponential forms, which might shed some light on understanding the temporal nature of diseases like flu. For time-dependent FRM there is an epidemic threshold related to the FRM parameters. We have proven that the mean field critical transmissibility for the SIS model and the critical transmissibility for the SIR model are the lower and the the upper bounds of the critical transmissibility for the FRM model, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...