Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(11): 7045-7105, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38754042

RESUMO

Ferroelectrics have become indispensable components in various application fields, including information processing, energy harvesting, and electromechanical conversion, owing to their unique ability to exhibit electrically or mechanically switchable polarization. The distinct polar noncentrosymmetric lattices of ferroelectrics make them highly responsive to specific crystal structures. Even slight changes in the lattice can alter the polarization configuration and response to external fields. In this regard, strain engineering has emerged as a prevalent regulation approach that not only offers a versatile platform for structural and performance optimization within ferroelectrics but also unlocks boundless potential in various functional materials. In this review, we systematically summarize the breakthroughs in ferroelectric-based functional materials achieved through strain engineering and progress in method development. We cover research activities ranging from fundamental attributes to wide-ranging applications and novel functionalities ranging from electromechanical transformation in sensors and actuators to tunable dielectric materials and information technologies, such as transistors and nonvolatile memories. Building upon these achievements, we also explore the endeavors to uncover the unprecedented properties through strain engineering in related chemical functionalities, such as ferromagnetism, multiferroicity, and photoelectricity. Finally, through discussions on the prospects and challenges associated with strain engineering in the materials, this review aims to stimulate the development of new methods for strain regulation and performance boosting in functional materials, transcending the boundaries of ferroelectrics.

2.
Nano Lett ; 24(10): 3118-3124, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421801

RESUMO

The magnetic and electric dipoles of ferroics play a central role in their fascinating properties. In particular, topological configurations have shown promising potential for use in novel electromechanical and electronic devices. Magnetic configurations from simple collinear to complex topological are well-documented. In contrast, many complex topological features in the electric counterpart remain unexplored. Here, we report the first example of three-dimensional electric dipole sinewave topological structure in a PbZrO3-based bulk perovskite, which presents an interesting triple-hysteresis loop macroscopically. This polar configuration consists of two orthogonal sinewave electric dipole modulations decoded from a polar incommensurate phase by advanced diffraction and atomic-resolution imaging techniques. The resulting topology is unraveled to be the competition between the antiferroelectric and ferroelectric states, stabilized by the modulation of the Pb 6s2 lone pair and the antiferrodistortive effect. These findings further reinforce the similarity of the magnetic and electric topologies.

3.
Int Microbiol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196020

RESUMO

Sun-drying is a traditional process for preparing dried shrimp in coastal area of South China, but its impacts on nutrition and the formation of flavor-contributory substances in dried shrimp remain largely unknown. This study aimed to examine the effects of the production process on the microbiota and metabolites in dried shrimp. 16S rDNA amplicon sequencing was employed to identify 170 operational taxonomic units (OTUs), with Vibrio, Photobacterium, and Shewanella emerging as the primary pathogenic bacteria in shrimp samples. Lactococcus lactis was identified as the principal potential beneficial microorganism to accrue during the dried shrimp production process and found to contribute significantly to the development of desirable shrimp flavors. LC-MS-based analyses of dried shrimp sample metabolomes revealed a notable increase in compounds associated with unsaturated fatty acid biosynthesis, arachidonic acid metabolism, amino acid biosynthesis, and flavonoid and flavanol biosynthesis throughout the drying process. Subsequent exploration of the relationship between metabolites and bacterial communities highlighted the predominant coexistence of Bifidobacterium, Clostridium, and Photobacterium contributing heterocyclic compounds and metabolites of organic acids and their derivatives. Conversely, Arthrobacter and Staphylococcus were found to inhibit each other, primarily in the presence of heterocyclic compounds. This comprehensive investigation provides valuable insights into the dynamic changes in the microbiota and metabolites of dried shrimps spanning different drying periods, which we expect to contribute to enhancing production techniques and safety measures for dried shrimp processing.

4.
J Am Chem Soc ; 146(3): 1926-1934, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193748

RESUMO

Dielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm-3 remarkably in strontium titanate (SrTiO3), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects. Atomic-scale characterizations confirm that these Ti/O defects lead to local symmetry breaking and local lattice strains, thus leading to the formation of the isolated ultrafine polar nanoclusters with varying sizes from 2 to 8 nm. These nanoclusters account for both considerable dielectric polarization and negligible polarization hysteresis. The present study opens a new realm of designing high-performance dielectric capacitors utilizing a large family of readily available linear dielectrics with very simple chemistry.

5.
World J Surg Oncol ; 22(1): 38, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287345

RESUMO

BACKGROUND: Sarcopenia is associated with poor outcomes in many malignancies. However, the relationship between sarcopenia and the prognosis of pancreatic cancer has not been well understood. The aim of this meta-analysis was to identify the prognostic value of preoperative sarcopenia in patients with pancreatic cancer after curative-intent surgery. METHODS: Database from PubMed, Embase, and Web of Science were searched from its inception to July 2023. The primary outcomes were overall survival (OS), progression-free survival (PFS), and the incidence of major complications. The hazard ratio (HR), odds ratio (OR), and 95% confidence intervals (CIs) were used to assess the relationship between preoperative sarcopenia and the prognosis of patients with pancreatic cancer. All statistical analyses were conducted by Review Manager 5.3 and STATA 17.0 software. RESULTS: A total of 23 retrospective studies involving 5888 patients were included in this meta-analysis. The pooled results demonstrated that sarcopenia was significantly associated with worse OS (HR = 1.53, P < 0.00001) and PFS (HR = 1.55, P < 0.00001). However, this association was not obvious in regard to the incidence of major complications (OR = 1.33, P = 0.11). CONCLUSION: Preoperative sarcopenia was preliminarily proved to be associated with the terrible prognosis of pancreatic cancer after surgery. However, this relationship needs to be further validated in more prospective studies.


Assuntos
Neoplasias Pancreáticas , Sarcopenia , Humanos , Sarcopenia/complicações , Sarcopenia/diagnóstico , Estudos Prospectivos , Estudos Retrospectivos , Prognóstico , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/cirurgia
6.
Mater Horiz ; 11(3): 626-645, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38078479

RESUMO

The discovery of unconventional scale-free ferroelectricity in HfO2-based fluorite thin films has attracted great attention in recent years for their promising applications in low-power logic and nonvolatile memories. The ferroelectricity of HfO2 is intrinsically originated from the widely accepted ferroelectric metastable orthorhombic Pca21 phase. In the last decade, defect-doping/solid solution has shown excellent prospects in enhancing and stabilizing the ferroelectricity via isovalent or aliovalent defect-engineering. Here, the recent advances in defect-engineered HfO2-based ferroelectrics are first reviewed, including progress in mono-ionic doping and mixed ion-doping. Then, the defect-lattice correlation, the point-defect promoted phase transition kinetics, and the interface-engineered dynamic behaviour of oxygen vacancy are summarized. In addition, thin film preparation and ion bombardment doping are summarized. Finally, the outlook and challenges are discussed. A multiscale structural optimization approach is suggested for further property optimization. This article not only covers an overview of the state-of-art advances of defects in fluorite ferroelectrics, but also future prospects that may inspire their further property-optimization via defect-engineering.

7.
J Am Chem Soc ; 146(1): 460-467, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109256

RESUMO

Dielectric ceramic capacitors with high recoverable energy density (Wrec) and efficiency (η) are of great significance in advanced electronic devices. However, it remains a challenge to achieve high Wrec and η parameters simultaneously. Herein, based on density functional theory calculations and local structure analysis, the feasibility of developing the aforementioned capacitors is demonstrated by considering Bi0.25Na0.25Ba0.5TiO3 (BNT-50BT) as a matrix material with large local polarization and structural distortion. Remarkable Wrec and η of 16.21 J/cm3 and 90.5% have been achieved in Bi0.25Na0.25Ba0.5Ti0.92Hf0.08O3 via simple chemical modification, which is the highest Wrec value among reported bulk ceramics with η greater than 90%. The examination results of local structures at lattice and atomic scales indicate that the disorderly polarization distribution and small nanoregion (∼3 nm) lead to low hysteresis and high efficiency. In turn, the drastic increase in local polarization activated via the ultrahigh electric field (80 kV/mm) leads to large polarization and superior energy storage density. Therefore, this study emphasizes that chemical design should be established on a clear understanding of the performance-related local structure to enable a targeted regulation of high-performance systems.

8.
Science ; 382(6676): 1265-1269, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096375

RESUMO

Effective control of heat transfer is vital for energy saving and carbon emission reduction. In contrast to achievements in electrical conduction, active control of heat transfer is much more challenging. Ferroelectrics are promising candidates for thermal switching as a result of their tunable domain structures. However, switching ratios in ferroelectrics are low (<1.2). We report that high-quality antiferroelectric PbZrO3 epitaxial thin films exhibit high-contrast (>2.2), fast-speed (<150 nanoseconds), and long-lifetime (>107) thermal switching under a small voltage (<10 V). In situ reciprocal space mapping and atomistic modelings reveal that the field-driven antiferroelectric-ferroelectric phase transition induces a substantial change of primitive cell size, which modulates phonon-phonon scattering phase space drastically and results in high switching ratio. These results advance the concept of thermal transport control in ferroic materials.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38048596

RESUMO

An outstanding challenge for eco-friendly ferroelectric (FE) refrigeration is to achieve a large adiabatic temperature change within a broad temperature range originating from the electrocaloric (EC) effect, which is expected to be realized in antiferroelectric (AFE) materials owing to the large entropy change during electric field and thermally induced phase transition. In this work, a large EC response over a wide response temperature range can be achieved slightly above room temperature via designing the phase transition of NaNbO3. An irreversible to reversible AFE-FE phase transition on heating induced by the introduction of CaZrO3 into NaNbO3 plays a key role in the optimized electrocaloric refrigeration. Accordingly, accompanying the local structure transformation corresponding to the B-site ions, the transition temperature between the square polarization-electric field (P-E) hysteresis loop (the irreversible AFE-FE phase transition induced by the electric field) and the repeatable double P-E hysteresis loop (the electric field induced reversible AFE-FE phase transition) was tailored to around room temperature, in favor of extending large entropy change to the wide temperature range. This work provides an efficient approach to designing lead-free EC materials with excellent EC performance, promoting the advancement of environmentally friendly solid-state cooling technology.

11.
J Am Chem Soc ; 145(35): 19396-19404, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37606548

RESUMO

Designing Pb-free relaxors with both a high capacitive energy density (Wrec) and high storage efficiency (η) remains a remarkable challenge for cutting-edge pulsed power technologies. Local compositional heterogeneity is crucial for achieving complex polar structure in solid solution relaxors, but its role in optimizing energy storage properties is often overlooked. Here, we report that an exceptionally high Wrec of 15.2 J cm-3 along with an ultrahigh η of 91% can be achieved through designing local chemical clustering in Bi0.5Na0.5TiO3-BaTiO3-based relaxors. A three-dimensional atomistic model derived from neutron/X-ray total scattering combined with reverse Monte Carlo method reveals the presence of subnanometer scale clustering of Bi, Na, and Ba, which host differentiated polar displacements, and confirming the prediction by density functional theory calculations. This leads to a polar state with small polar clusters and strong length and direction fluctuations in unit-cell polar vectors, thus manifesting improved high-field polarizability, steadily reduced hysteresis, and high breakdown strength macroscopically. The favorable polar structure features also result in a unique field-increased η, excellent stability, and superior discharge capacity. Our work demonstrates that the hidden local chemical order exerts a significant impact on the polarization characteristic of relaxors, and can be exploited for accessing superior energy storage performance.

12.
Mater Horiz ; 10(10): 4389-4397, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465904

RESUMO

Polarization rotation caused by various strains, such as substrate and/or chemical strain, is essential to control the electronic structure and properties of ferroelectric materials. This study proposes anion-induced polarization rotation with chemical strain, which effectively improves ferroelectricity. A method for the sulfurization of BiFeO3 thin films by introducing sulfur anions is presented. The sulfurized films exhibited substantial enhancement in room-temperature ferroelectric polarization through polarization rotation and distortion, with a 170% increase in the remnant polarization from 58 to 100.7 µC cm-2. According to first-principles calculations and the results of X-ray absorption spectroscopy and high-angle annular dark-field scanning transmission electron microscopy, this enhancement arose from the introduction of S atoms driving the re-distribution of the lone-pair electrons of Bi, resulting in the rotation of the polarization state from the [001] direction to the [110] or [111] one. The presented method of anion-driven polarization rotation might enable the improvement of the properties of oxide materials.

13.
J Am Chem Soc ; 145(25): 13623-13631, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327186

RESUMO

Owing to their wide application in oxide-based electrochemical and energy devices, ion conductors have attracted considerable attention. However, the ionic conductivity of the developed systems is still too low to satisfy the low-temperature application. In this study, by developing the emergent interphase strain engineering method, we achieve a colossal ionic conductivity in SrZrO3-xMgO nanocomposite films, which is over one order of magnitude higher than that of the currently widely used yttria-stabilized zirconia below 673 K. Atomic-scale electron microscopy studies ascribe this superior ionic conductivity to the periodically well-aligned SrZrO3 and MgO nanopillars that feature coherent interfaces. Wherein, a tensile strain as large as +1.7% is introduced into SrZrO3, expanding the c-lattice and distorting the oxygen octahedra to decrease the oxygen migration energy. Combining with theoretical assessments, we clarify the strain-dependent oxygen migration path and energy and unravel the mechanisms for strain-tuned ionic conductivity. This study provides a new scope for the property improvement of wide-range ion conductors by strain engineering.

16.
J Am Chem Soc ; 145(21): 11764-11772, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37205832

RESUMO

Dielectric capacitors have captured substantial attention for advanced electrical and electronic systems. Developing dielectrics with high energy density and high storage efficiency is challenging owing to the high compositional diversity and the lack of general guidelines. Herein, we propose a map that captures the structural distortion (δ) and tolerance factor (t) of perovskites to design Pb-free relaxors with extremely high capacitive energy storage. Our map shows how to select ferroelectric with large δ and paraelectric components to form relaxors with a t value close to 1 and thus obtaining eliminated hysteresis and large polarization under a high electric breakdown. Taking the Bi0.5Na0.5TiO3-based solid solution as an example, we demonstrate that composition-driven predominant order-disorder characteristic of local atomic polar displacements endows the relaxor with a slushlike structure and strong local polar fluctuations at several nanoscale. This leads to a giant recoverable energy density of 13.6 J cm-3, along with an ultrahigh efficiency of 94%, which is far beyond the current performance boundary reported in Pb-free bulk ceramics. Our work provides a solution through rational chemical design for obtaining Pb-free relaxors with outstanding energy-storage properties.

17.
Nat Commun ; 14(1): 2414, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105995

RESUMO

Enhanced electromechanical response can commonly be found during the crossover from normal to relaxor ferroelectric state, making relaxors to be potential candidates for actuators. In this work, (Pb0.917La0.083)(Zr0.65Ti0.35)0.97925O3 ceramic was taken as a case study, which shows a critical nonergodic state with both double-like P-E loop and irreversible relaxor-normal ferroelectric phase after poling at room temperature. The low-hysteresis linear-like S-P2 loop, in-situ synchrotron X-ray diffraction and transmission electron microscope results suggest that the nonpolar relaxor state acts as a bridge during polarization reorientation process, accompanying which lattice strain contributes to 61.8% of the total strain. In other words, the transformation from normal ferroelectric to nonergodic relaxor state could be triggered by electric field through polarization contraction, which could change to be spontaneously with slightly increasing temperature in the nonergodic relaxor zone. Therefore, pseudo-ergodicity in nonergodic relaxors (i.e. reversible nonergodic-normal ferroelectric phase transition) driven by periodic electric field should be the main mechanism for obtaining large electrostrain close to the nonergodic-ergodic relaxor boundary. This work provides new insights into polarization reorientation process in relaxor ferroelectrics, especially phase instability in nonergodic relaxor zone approaching to freezing temperature.

18.
Nat Commun ; 14(1): 1166, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859413

RESUMO

Dielectric capacitors with high energy storage performance are highly desired for next-generation advanced high/pulsed power capacitors that demand miniaturization and integration. However, the poor energy-storage density that results from the low breakdown strength, has been the major challenge for practical applications of dielectric capacitors. Herein, we propose a heterovalent-doping-enabled atom-displacement fluctuation strategy for the design of low-atom-displacements regions in the antiferroelectric matrix to achieve the increase in breakdown strength and enhancement of the energy-storage density for AgNbO3-based multilayer capacitors. An ultrahigh breakdown strength ~1450 kV·cm-1 is realized in the Sm0.05Ag0.85Nb0.7Ta0.3O3 multilayer capacitors, especially with an ultrahigh Urec ~14 J·cm-3, excellent η ~ 85% and PD,max ~ 102.84 MW·cm-3, manifesting a breakthrough in the comprehensive energy storage performance for lead-free antiferroelectric capacitors. This work offers a good paradigm for improving the energy storage properties of antiferroelectric multilayer capacitors to meet the demanding requirements of advanced energy storage applications.

19.
Science ; 379(6638): 1218-1224, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36952424

RESUMO

Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.

20.
Nanomicro Lett ; 15(1): 65, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899147

RESUMO

Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market. Here, an ultrahigh energy storage density of ~ 13.8 J cm-3 and a large efficiency of ~ 82.4% are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy, named high-entropy strategy, realizing nearly ten times growth of energy storage density compared with low-entropy material. Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time. The achievement of excellent energy storage properties should be attributed to the enhanced random field, decreased nanodomain size, strong multiple local distortions, and improved breakdown field. Furthermore, the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized. The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics, promoting the development of advanced capacitors .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...