Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 42(6): 1809-1821, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022247

RESUMO

Whole-slide image (WSI) classification is fundamental to computational pathology, which is challenging in extra-high resolution, expensive manual annotation, data heterogeneity, etc. Multiple instance learning (MIL) provides a promising way towards WSI classification, which nevertheless suffers from the memory bottleneck issue inherently, due to the gigapixel high resolution. To avoid this issue, the overwhelming majority of existing approaches have to decouple the feature encoder and the MIL aggregator in MIL networks, which may largely degrade the performance. Towards this end, this paper presents a Bayesian Collaborative Learning (BCL) framework to address the memory bottleneck issue with WSI classification. Our basic idea is to introduce an auxiliary patch classifier to interact with the target MIL classifier to be learned, so that the feature encoder and the MIL aggregator in the MIL classifier can be learned collaboratively while preventing the memory bottleneck issue. Such a collaborative learning procedure is formulated under a unified Bayesian probabilistic framework and a principled Expectation-Maximization algorithm is developed to infer the optimal model parameters iteratively. As an implementation of the E-step, an effective quality-aware pseudo labeling strategy is also suggested. The proposed BCL is extensively evaluated on three publicly available WSI datasets, i.e., CAMELYON16, TCGA-NSCLC and TCGA-RCC, achieving an AUC of 95.6%, 96.0% and 97.5% respectively, which consistently outperforms all the methods compared. Comprehensive analysis and discussion will also be presented for in-depth understanding of the method. To promote future work, our source code is released at: https://github.com/Zero-We/BCL.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Práticas Interdisciplinares , Neoplasias Pulmonares , Humanos , Teorema de Bayes , Algoritmos
2.
Med Image Anal ; 85: 102748, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731274

RESUMO

Computerized identification of lymph node metastasis of breast cancer (BCLNM) from whole-slide pathological images (WSIs) can largely benefit therapy decision and prognosis analysis. Besides the general challenges of computational pathology, like extra-high resolution, very expensive fine-grained annotation, etc., two particular difficulties with this task lie in (1) modeling the significant inter-tumoral heterogeneity in BCLNM pathological images, and (2) identifying micro-metastases, i.e., metastasized tumors with tiny foci. Towards this end, this paper presents a novel weakly supervised method, termed as Prototypical Multiple Instance Learning (PMIL), to learn to predict BCLNM from WSIs with slide-level class labels only. PMIL introduces the well-established vocabulary-based multiple instance learning (MIL) paradigm into computational pathology, which is characterized by utilizing the so-called prototypes to model pathological data and construct WSI features. PMIL mainly consists of two innovatively designed modules, i.e., the prototype discovery module which acquires prototypes from training data by unsupervised clustering, and the prototype-based slide embedding module which builds WSI features by matching constitutive patches against the prototypes. Relative to existing MIL methods for WSI classification, PMIL has two substantial merits: (1) being more explicit and interpretable in modeling the inter-tumoral heterogeneity in BCLNM pathological images, and (2) being more effective in identifying micro-metastases. Evaluation is conducted on two datasets, i.e., the public Camelyon16 dataset and the Zbraln dataset created by ourselves. PMIL achieves an AUC of 88.2% on Camelyon16 and 98.4% on Zbraln (at 40x magnification factor), which consistently outperforms other compared methods. Comprehensive analysis will also be carried out to further reveal the effectiveness and merits of the proposed method.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Metástase Linfática , Prognóstico
3.
Sensors (Basel) ; 21(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067559

RESUMO

Weakly supervised instance segmentation (WSIS) provides a promising way to address instance segmentation in the absence of sufficient labeled data for training. Previous attempts on WSIS usually follow a proposal-based paradigm, critical to which is the proposal scoring strategy. These works mostly rely on certain heuristic strategies for proposal scoring, which largely hampers the sustainable advances concerning WSIS. Towards this end, this paper introduces a novel framework for weakly supervised instance segmentation, called Weakly Supervised R-CNN (WS-RCNN). The basic idea is to deploy a deep network to learn to score proposals, under the special setting of weak supervision. To tackle the key issue of acquiring proposal-level pseudo labels for model training, we propose a so-called Attention-Guided Pseudo Labeling (AGPL) strategy, which leverages the local maximal (peaks) in image-level attention maps and the spatial relationship among peaks and proposals to infer pseudo labels. We also suggest a novel training loss, called Entropic OpenSet Loss, to handle background proposals more effectively so as to further improve the robustness. Comprehensive experiments on two standard benchmarking datasets demonstrate that the proposed WS-RCNN can outperform the state-of-the-art by a large margin, with an improvement of 11.6% on PASCAL VOC 2012 and 10.7% on MS COCO 2014 in terms of mAP50, which indicates that learning-based proposal scoring and the proposed WS-RCNN framework might be a promising way towards WSIS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...