Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 28(1): 287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38827473

RESUMO

Ischemic stroke is a common occurrence worldwide, posing a severe threat to human health and leading to negative financial impacts. Currently available treatments still have numerous limitations. As research progresses, extracellular vesicles are being found to have therapeutic potential in ischemic stroke. In the present study, the literature on extracellular vesicle therapy in animal studies of ischemic stroke was screened by searching databases, including PubMed, Embase, Medline, Web of Science and the Cochrane Library. The main outcomes of the present study were the neurological function score, apoptotic rate and infarct volumes. The secondary outcomes were pro-inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6. The study quality was assessed using the CAMARADES Checklist. Subgroup analyses were performed to evaluate factors influencing extracellular vesicle therapy. Review Man3ager5.3 was used for data analysis. A total of 20 relevant articles were included in the present meta-analysis. The comprehensive analysis revealed that extracellular vesicles exerted a significant beneficial effect on neurobehavioral function, reducing the infarct volume and decreasing the apoptotic rate. Moreover, extracellular vesicles were found to promote nerve recovery by inhibiting pro-inflammatory factors (TNF-α, IL-1ß and IL-6). On the whole, the present meta-analysis examined the combined effects of extracellular vesicles on nerve function, infarct volume, apoptosis and inflammation, which provides a foundation for the clinical study of extracellular vesicles.

2.
Aging (Albany NY) ; 15(9): 3538-3548, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37142269

RESUMO

LncRNA plays a pivotal role in the stemness and drug resistance of lung cancer. Here, we found that lncRNA-AC026356.1 was upregulated in stem spheres and chemo-resistant lung cancer cells. Our fish assay also shows that AC026356.1 was predominantly located in the cytoplasm of lung cancer cells and does not have protein-coding potential. Silencing AC026356.1 significantly inhibited proliferation and migration but increased apoptosis in A549-cisplatin (DDP) cells. Additionally, IGF2BP2 and the lncRNA-AC026356.1 positively regulated the proliferation and stemness of stem-like lung cancer cells. Further mechanistic investigation revealed that METTL14/IGF2BP2-mediated m6A modification and stabilization of the AC026356.1 RNA. Functional analysis corroborated that AC026356.1 acted as a downstream target of METTL14/IGF2BP2 and AC026356.1 silencing could block the oncogenicity of lung cancer stem-like cells. AC026356.1 expression was correlated with immune cell infiltration and T cell exhaustion. Compared with paired adjacent normal tissues, lung cancer specimens exhibited consistently upregulated METTL14/IGF2BP2/AC026356.1. M6A-modified METTL14/IGF2BP2/AC026356.1 loop may serve as a potential therapeutic target and prognostic predictor for lung cancer therapy and diagnosis in the clinic.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Animais , Via de Sinalização Wnt/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/genética , Neoplasias Pulmonares/patologia , Pulmão/patologia , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células/genética
3.
BMC Cancer ; 23(1): 57, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647032

RESUMO

Circadian clock genes are significant in the occurrence and development of HCC and long-non coding RNAs (lncRNAs) are closely related to HCC progression. In this study, we aimed to establish a prognostic risk model for HCC. Circadian clock-related lncRNAs expressed in HCC were extracted from The Cancer Genome Atlas. A nomogram was established to predict individual survival rate. Biological processes enriched for risk model transcripts were investigated by Gene Set Enrichment Analysis. Further, we evaluated the relationship between risk score and immune-checkpoint inhibitor-related gene expression level. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to assess the sensitivity of tumors in high- and low-risk score groups to different drugs. A total of 11 circadian clock-related lncRNAs were included in multi-Cox proportional hazards model analysis to establish a risk model. Univariate and multivariate Cox regression analysis showed that the risk model was an independent risk factor in HCC. The risk model was a significantly associated with the immune signature. Further GDSC analysis indicated that patients in each risk score group may be sensitive to different anti-cancer drugs. QRT-PCR analysis results showed that C012073.1, PRRT3-AS1, TMCC1-AS1, LINC01138, MKLN1-AS, KDM4A-AS1, AL031985.3, POLH-AS1, LINC01224, and AC099850.3 were more highly expressed in Huh-7 and HepG2, compared to LO2, while AC008549.1 were lower expressed. Our work established a prognostic model for HCC. Risk score analysis indicated that the model is significantly associated with modulation tumor immunity and could be used to guide more effective therapeutic strategies in the future.


Assuntos
Carcinoma Hepatocelular , Relógios Circadianos , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Relógios Circadianos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Prognóstico , RNA Longo não Codificante/genética
4.
SLAS Technol ; 28(1): 22-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328181

RESUMO

It is meaningful to find suitable in vitro models for preclinical toxicology and efficacy evaluation of nanodrugs and nanocarriers or drug screening and promoting clinical transformation of nanocarriers. The emergence and development of organoids technology provide a great possibility to achieve this goal. Herein, we constructed an in vitro 3D organoid model to study the inhibitory effect of nanocarriers on colorectal cancer. And designed hydroxyapatite nanoclusters (c-HAP) mediated by polydopamine (PDA) formed under alkaline conditions (pH 9.0), then used c-HAP to load DOX (c-HAP/DOX) as nanocarrier for improved chemotherapy. In vitro, drug release experiments show that c-HAP/DOX has suitable responsive to pH, can be triggered to the facile release of DOX in a slightly acidic environment (pH 6.0), and maintain specific stability in a neutral pH value (7.4) environment. c-HAP/DOX showed an excellent antitumor effect in the two-dimensional (2D) cell model and three-dimensional (3D) patient-derived colon cancer organoids (PDCCOs) model. In addition, c-HAP/DOX can release a sufficient amount of DOX to produce cytotoxicity in a slightly acidic environment, entering efficiently into the colorectal cancer cells caused endocytosis and induced apoptosis. Therefore, organoids can serve as an effective in vitro model to present the structure and function of colorectal cancer tissues and be used to evaluate the efficacy of nanocarriers for tumors.


Assuntos
Neoplasias Colorretais , Doxorrubicina , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Durapatita/química , Durapatita/farmacologia , Apoptose , Micelas , Neoplasias Colorretais/tratamento farmacológico
5.
Cell Death Dis ; 13(12): 1026, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476988

RESUMO

Hematological and neurological expressed 1 like (HN1L) is a newly identified oncogene in lung cancer and hepatocellular carcinoma recently identified by our team, but its roles in the development and treatment of esophageal squamous cell carcinoma (ESCC) remain incompletely cataloged. Here, using ESCC tissue array and public database analysis, we demonstrated that HN1L was highly expressed in ESCC tissues, which was associated with tumor tissue invasion, poor clinical stage and short survival for ESCC patients. Loss- and gain-of-function studies in ESCC cells revealed that HN1L enhances ESCC cell metastasis and proliferation in vitro and in mice models. Moreover, high level of HN1L reduces the sensibility of ESCC cells to chemotherapeutic drugs, such as Docetaxel. Mechanism studies revealed that HN1L activated the transcription of polo-like kinase 1 (PLK1) by interacting with transcription factor AP-2γ, which increased the expression of malignancy related proteins Cyclin D1 and Slug in ESCC cells. Blocking PLK1 with inhibitor BI-2356 abrogated the oncogenic function of HN1L and significantly suppressed ESCC progression by combining with chemotherapy. Therefore, this study demonstrates the vital pro-tumor role of HN1L/AP-2γ/PLK1 signaling axis in ESCC, offering a potential therapeutic strategy for ESCC patients with high HN1L by blocking PLK1.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Camundongos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Fator de Transcrição AP-2 , Humanos , Quinase 1 Polo-Like
6.
Artigo em Inglês | MEDLINE | ID: mdl-34335843

RESUMO

Huxie Huaji (HXHJ) Ointment is a famous traditional Chinese medicinal prescription and is commonly used for the clinical treatment of hepatocellular carcinoma by boosting immunity and detoxification. However, the scientific evidence for the effect of HXHJ Ointment on hepatocellular carcinoma and the underlying molecular mechanism are lacking. The present study aimed to identify the effects of HXHJ Ointment on hepatocellular carcinoma in vitro and in vivo as well as investigating the mechanistic basis for the anticancer effect of HXHJ ointment. First, liquid chromatography-mass spectrometry was used to verify the composition of HXHJ Ointment and quality control. Second, in vitro, Cell Counting Kit (CCK8) cell viability assay and Hoechst 33342 staining assay were performed to explain the cell apoptosis. The protein levels of tumor suppressor protein (p53), B-cell lymphoma 2 gene (Bcl-2), cytochrome C (Cyt-C), and aspartate proteolytic enzyme-3 (caspase-3) were examined by immunofluorescence. Finally, in vivo, hematoxylin and eosin (H&E) staining was used to observe the pathological changes in hepatocellular carcinoma samples. Western blots and immunohistochemistry were used to detect the anticancer properties of HXHJ ointment. The results in vitro showed that 20% HXHJ Ointment serum could significantly inhibit HepG2 cell proliferation, increased tumor suppressor gene p53, downregulated antiapoptotic protein Bcl-2, promoted the release of mitochondrial Cyt-C, activated caspase-3, and induced HepG2 cell apoptosis. Furthermore, in vivo experiments showed that HXHJ Ointment could effectively inhibit tumor growth in nude mice xenotransplanted with HepG2 cells, changed the morphology of tumor cells, and regulated the expression of apoptosis-related protein pathway p53/Bcl-2/Cyt-C/caspase-3. HXHJ Ointment can significantly inhibit the development of hepatocellular carcinoma, and its mechanism may be related to the regulation of p53/Bcl-2/Cyt-C/caspase-3 signaling pathway to induce cell mitochondrial apoptosis.

7.
Oncol Lett ; 21(4): 286, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732362

RESUMO

Curcumin, one of the active ingredients of Curcuma longa (Jianghuang), has been reported to exert multiple bioactivities, including pro-apoptotic and anti-inflammatory activities. In recent years, curcumin has been extensively studied, and it has been revealed that curcumin inhibits the growth of numerous types of cancer. However, to the best of our knowledge, the inhibitory effects of curcumin on the activation or expansion of myeloid-derived suppressor cells (MDSCs) in liver cancer and the underlying mechanism have not yet been determined. Therefore, the present study aimed to investigate the inhibitory effect of curcumin on MDSC activity and the associated anti-neoplastic mechanism in a HepG2 ×enograft mouse model. The effect of curcumin on the viability of Huh-7, MHCC-97H and HepG2 cells in vitro was analyzed using a Cell Counting Kit-8 assay. The effects of curcumin on tumor growth, numbers of MDSCs, expression levels of proteins involved in the toll-like receptor 4 (TLR4)/NF-κB signaling pathway, levels of related inflammatory factors and angiogenesis were determined in HepG2 ×enograft model mice, which were given different doses of curcumin via intragastrical administration. The results of the present study revealed that curcumin inhibited the viability of Huh-7, MHCC-97H and HepG2 cells and the growth of HepG2 ×enograft tumors in mice. Flow cytometric analysis indicated that curcumin reduced the number of MDSCs in mouse xenograft tumors. In addition, the results demonstrated that curcumin inhibited the TLR4/NF-κB signaling pathway and the expression of inflammatory factors, including IL-6, IL-1ß, prostaglandin E2 and cyclooxygenase-2, in mouse xenograft tumors. Furthermore, curcumin suppressed the secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte-colony stimulating factor (G-CSF), which are essential factors for MDSCs modulation, in tumor tissues. Additionally, curcumin was revealed to inhibit angiogenesis, which was demonstrated by the downregulation of the expression levels of vascular endothelial growth factor, CD31 and α-smooth muscle actin in western blotting, immunohistochemistry and immunofluorescence experiments. In conclusion, the findings of the present study identified a novel mechanism via which curcumin may suppress the growth of liver cancer by reducing the numbers of MDSCs and subsequently disrupting the process of angiogenesis. These conclusions were supported by the observed inactivation of the TLR4/NF-κB signaling pathway-mediated inflammatory response and the downregulation of GM-CSF and G-CSF secretion in xenograft tissues.

8.
Comb Chem High Throughput Screen ; 24(1): 129-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32772910

RESUMO

AIM AND OBJECTIVE: Calculus Bovis (CB) has been employed to treat diseases for a long time. It has been identified to play significant anti-inflammatory and anti-tumor roles. However, the mechanism of treating primary liver cancer (PLC) remains to be revealed. This study aims to clarify the molecules and mechanisms of CB in treating PLC. MATERIALS AND METHODS: After oral bioavailability (OB) and drug-likeness (DL) screening, 15 small molecules were identified as the potential ingredients against PLC. Following this, related targets network constructions and pathways were applied to clarify the mechanism of CB in treating PLC. An in vitro experiment was carried out to identify the function of CB in treating PLC. RESULTS: Eleven compounds of CB were identified that play an anti-PLC role, including oleanolic acid, ergosterol, ursolic acid, etc. The potential targets which were observed include IL6, MAPK-8, VEGFA, Caspase-3, etc. Further analysis showed that the mechanism of CB in the treatment of PLC involved apoptosis-related pathways and immune-related pathways. CONCLUSION: In summary, the current study combines network pharmacology and in vitro experiments to reveal the mechanism of CB against PLC. We concluded that 11 ingredients of CB have an anti-PLC effect. Furthermore, CB plays a key role in treating PLC mainly by apoptosisrelated pathways and immune-related pathways. Our experiment verifies that CB promotes the apoptosis of SMMC-7721.


Assuntos
Antineoplásicos/química , Cálculos/química , Medicamentos de Ervas Chinesas/química , Neoplasias Hepáticas/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Bovinos , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Ergosterol/química , Humanos , Interleucina-6/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Relação Estrutura-Atividade , Triterpenos/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido Ursólico
9.
Exp Ther Med ; 15(5): 4067-4079, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725359

RESUMO

A stroke is a focal cerebral insult that frequently causes severe neurological deficit and mortality. Recent studies have demonstrated that multipotent mesenchymal stromal cells (MSCs) hold great promise for neurovascular remodeling and neurological function recovery following a stroke. Rather than a direct replacement of parenchymal brain cells, the therapeutic mechanism of MSCs is suggested to be the secretion of soluble factors. Specifically, emerging data described MSCs as being able to release extracellular vesicles (EVs), which contain a variety of cargo including proteins, lipids, DNA and various RNA species. The released EVs can target neurocytes and vascular cells and modify the cell's functions by delivering the cargo, which are considered to mediate the neural restoration effects of MSCs. Therefore, EVs may be developed as a novel cell-free therapy for neurological disorders. In the present review, the current advances regarding the components, functions and therapeutic potential of EVs are summarized and the use of MSC-derived EVs as a promising approach in the treatment of stroke are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...