Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 24453-24468, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475272

RESUMO

In this work, based on two parallel reservoir computers realized by the two polarization components of the optically pumped spin-VCSEL with double optical feedbacks, we propose the fusion-prediction scheme for the Mackey-Glass (MG) and Lorenz (LZ) chaotic time series. Here, the direct prediction and iterative prediction results are fused in a weighted average way. Compared with the direct-prediction errors, the fusion-prediction errors appear great decrease. Their values are far less than the values of the direct-prediction errors when the iteration step-size are no more than 15. By the optimization of the temporal interval and the sampling period, under the iteration step-size of 3, the fusion-prediction errors for the MG and LZ chaotic time-series can be reduced to 0.00178 and 0.004627, which become 8.1% of the corresponding direct-prediction error and 28.68% of one, respectively. Even though the iteration step-size reaches to 15, the fusion-prediction errors for the MG and LZ chaotic time-series can be reduced to 55.61% of the corresponding direct-prediction error and 77.28% of one, respectively. In addition, the fusion-prediction errors have strong robustness on the perturbations of the system parameters. Our studied results can potentially apply in the improvement of prediction accuracy for some complex nonlinear time series.

2.
Opt Express ; 31(13): 21367-21388, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381237

RESUMO

In this work, we propose a chaotic secure communication system with optical time division multiplexing (OTDM), using two cascaded reservoir computing systems based on multi beams of chaotic polarization components emitted by four optically pumped VCSELs. Here, each level of reservoir layer includes four parallel reservoirs, and each parallel reservoir contains two sub-reservoirs. When the reservoirs in the first-level reservoir layer are well trained and the training errors are far less than 0.1, each group of chaotic masking signals can be effectively separated. When the reservoirs in the second reservoir layer are effectively trained and the training errors are far less than 0.1, the output for each reservoir can be well synchronized with the corresponding original delay chaotic carrier-wave. Here, the synchronization quality between them can be characterized by the correlation coefficients of more than 0.97 in different parameter spaces of the system. Under these high-quality synchronization conditions, we further discuss the performances of dual-channel OTDM with a rate of 4×60 Gb/s. By observing the eye diagram, bit error rate and time-waveform of each decoded message in detail, we find that there is a large eye-openings in the eye diagrams, low bit error rate and higher quality time-waveform for each decoded message. Except that the bit error rate of one decoded message is lower than 7 × 10-3 in different parameter spaces, and those of the other decoded messages are close to 0, indicating that high-quality data transmissions are expected to be realized in the system. The research results show that the multi-cascaded reservoir computing systems based on multiple optically pumped VCSELs provide an effective method for the realization of multi-channel OTDM chaotic secure communications with high-speed.

3.
Opt Express ; 30(21): 37603-37618, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258346

RESUMO

We present a novel scheme for the detections of the position-vectors of the multi targets distributed in a circular space using multi channels of the probe chaotic waves emitted by the asymmetric coupling semiconductor lasers network (ACSLN), where these probe waves possess the attractive features of the time-space uncorrelation and wide bandwidth. Using these features, the accurate measurement for the position-vectors of the multi targets can be achieved by correlating the multi channels of the probe waves with their corresponding reference waves. The further research results show that the detections for the position-vectors of the multi targets possess very low relative errors that are no more than 0.22%. The ranging-resolutions for the multi targets located in a circular space can be achieved as high as 3 mm by optimizing some key parameters, such as injection current and injection strength. In addition, the ranging-resolutions exhibit excellent strong anti-noise performance even when the signal-to-noise ratio and relative noise intensity appear obvious enhancement. The detections for the position-vectors of the multi targets based on the ACSLN offers interesting perspectives for the potential applications in the driverless cars and the object tracking system with omnidirectional vision.

4.
Opt Express ; 30(20): 36209-36233, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258555

RESUMO

In this work, we utilize two cascade coupling modes (unidirectional coupling and bidirectional coupling) to construct a four-layer deep reservoir computing (RC) system based on the cascade coupled optically-pumped spin-VCSEL. In such a system, there are double sub-reservoirs in each layer, which are formed by the chaotic x-PC and y-PC emitted by the reservoir spin-VCSEL in each layer. Under these two coupling modes, the chaotic x-PC and y-PC emitted by the driving optically-pumped spin-VCSEL (D-Spin-VCSEL), as two learning targets, are predicted by utilizing the four-layer reservoirs. In different parameter spaces, it is further explored that the outputs of the double sub-reservoirs in each layer are respectively synchronized with the chaotic x-PC and y-PC emitted by the D-Spin-VCSEL. The memory capacities (MCs) for the double sub-reservoirs in each layer are even further investigated. The results show that under two coupling modes, the predictions of the double sub-reservoirs with higher-layer for these two targets have smaller errors, denoting that the higher-layer double sub-reservoirs possess better predictive learning ability. Under the same system parameters, the outputs of the higher-layer dual parallel reservoirs are better synchronized with two chaotic PCs emitted by the D-Spin-VCSEL, respectively. The larger MCs can also be obtained by the higher-layer double reservoirs. In particular, compared with the four-layer reservoir computing system under unidirectional coupling, the four-layer reservoir computing system under bidirectional coupling shows better predictive ability in the same parameter space. The chaotic synchronizations predicted by each layer double sub-reservoirs under bidirectional coupling can be obtained higher qualities than those under unidirectional coupling. By the optimization of the system parameters, the outputs of the fourth-layer double sub-reservoirs are almost completely synchronized with the chaotic x-PC and y-PC emitted by the D-Spin-VCSEL, respectively, due to their correlation coefficient used to measure synchronization quality can be obtained as 0.99. These results have potential applications in chaotic computation, chaotic secure communication and accurate prediction of time series.

5.
Opt Express ; 30(22): 39561-39581, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298905

RESUMO

In this work, with the mixing fractions being known in advance or unknown, the schemes and theories for the separations of two groups of the mixed optical chaotic signals are proposed in detail, using the VCSEL-based reservoir computing (RC) systems. Here, two groups of the mixed optical chaotic signals are linearly combined with many beams of the chaotic x-polarization components (X-PCs) and Y-PCs emitted by the optically pumped spin-VCSELs operation alone. Two parallel reservoirs are performed by using the chaotic X-PC and Y-PC output by the optically pumped spin-VCSEL with both optical feedback and optical injection. Moreover, we further demonstrate the separation performances of the mixed chaotic signal linearly combined with no more than three beams of the chaotic X-PC or Y-PC. We find that two groups of the mixed optical chaos signals can be effectively separated by using two reservoirs in single RC system based on optically pumped Spin-VCSEL and their corresponding separated errors characterized by the training errors are no more than 0.093, when the mixing fractions are known as a certain value in advance. If the mixing fractions are unknown, we utilize two cascaded RC systems based on optically pumped Spin-VCSELs to separate each group of the mixed optical signals. The mixing fractions can be accurate predicted by using two parallel reservoirs in the first RC system. Based on the values of the predictive mixing fractions, two groups of the mixed optical chaos signals can be effectively separated by utilizing two parallel reservoirs in the second RC system, and their separated errors also are no more than 0.093. In the same way, the mixed optical chaos signal linearly superimposed with more than three beams of optical chaotic signals can be effectively separated. The method and idea for separation of complex optical chaos signals proposed by this paper may provide an impact to development of novel principles of multiple access and demultiplexing in multi-channel chaotic cryptography communication.

6.
Dalton Trans ; 49(25): 8557-8565, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32538413

RESUMO

A rational design of active, stable, and pH-compatible electrocatalysts is crucial to produce high-purity H2via an electrocatalytic water splitting reaction. Herein, we report a carbonized wood membrane (CWM) embedded with Mo2C/MoO3-x nanoparticles (denoted as MCWM) as an efficient and stable self-supported H2 evolution cathode in both acidic and alkaline solutions. The CWM features a high surface area with numerous aligned and open channels and abundant porosity, greatly facilitating electrolyte transport and gas release. The in situ embedded Mo2C/MoO3-x nanoparticles are uniformly dispersed throughout the entire framework of the CWM, providing abundant active sites. These structural synergies endow the as-fabricated MCWM electrodes with excellent electrocatalytic H2 evolution activity, and the optimal MCWM electrode requires overpotentials of 187 and 275 mV to achieve a current density of 10 mA cm-2 in 0.5 M H2SO4 and 1.0 M KOH, respectively. Moreover, the MCWM electrode exhibits superior H2 evolution stability at a high current density of 80 mA cm-2 in both solutions with nearly 100% faradaic efficiencies. This work provides a promising nature-inspired strategy for the development of self-supported and pH-compatible electrodes for large-scale electrocatalytic H2 evolution reactions.

7.
Dalton Trans ; 49(17): 5434-5439, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32307487

RESUMO

In this work, an effective vapor ammonization-electroreduction strategy is developed to fabricate a surface-reconstructed and N-coordinated Zn electrocatalyst (Zn-N), which exhibits high electrocatalytic activity and stability for CO2 reduction to CO with a faradaic efficiency (FE) of 85.6% and a CO partial current density of 11.2 mA cm-2 at -0.91 V vs. reversible hydrogen electrode (RHE), greatly outperforming Zn foil and surface-reconstructed Zn (Zn-H). Moreover, Zn-N also maintains good selectivity for CO production during the long-term CO2 electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...