Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(13): e2307561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967348

RESUMO

Multifunction superhydrophobic coatings that facilitate water harvesting are attractive for addressing the daunting water crisis, yet, they are caught in a double bind when their durability is considered, as durable coatings will require both tough micro-textures to survive concentrated stress and high-surface-energy chemistry to form chemical bonds within the matrix. To date, a universal bulk-phase coating that combines multifunctionality, ultra-durability, and fabrication feasibility remains challenging. Here, a binary cooperative cell design is reported that can solve the contradiction between the multifunctionality and durability requirements of superhydrophobic coatings. In this strategy, mechanochemically tailored cells with releasable nanoseeds are infused in the common matrix, which serves both as a versatile chemical bridge to achieve strong bonds within the coating building blocks, and as an instantaneous self-repairing generator to improve durability. Such a strategy significantly boosted the wear resistance and outdoor stability of the coatings by over 30-100 and 18 folds, respectively, compared with conventional coatings. The coating is applied to the sustainable application, i.e., enhancing the water collection efficiency by at least 1000% even after harsh abrasion. The strategy will broaden the vision in handling the dilemma properties among functional coatings and promote the application of superhydrophobic coatings in extreme environments.

2.
Nanoscale ; 16(6): 2695-2712, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38112659

RESUMO

With the advancement of information technology, touch-operated devices such as smartphones, tablets, and computers have become ubiquitous, reshaping our interaction with technology. Transparent surfaces, pivotal in the display industry, architecture, and household appliances, are prone to contamination from fingerprints, grease, and dust. Such contaminants compromise the cleanliness, aesthetic appeal, hygiene of the glass, and the overall user visual experience. As a result, fingerprint prevention has gained prominence in related research domains. This article delves into the primary characteristics of fingerprints and elucidates the fundamental mechanisms and components behind their formation. We then explore the essential properties, classifications, and theoretical foundations of anti-fingerprint surfaces. The paper concludes with a comprehensive review of recent advancements and challenges in transparent superlyophobic fingerprint-resistant surfaces, projecting future trajectories for transparent fingerprint-resistant glass surfaces.

3.
J Colloid Interface Sci ; 642: 255-263, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004259

RESUMO

Superhydrophilic coatings have incomparable advantages in anti-fogging and self-cleaning but are limited to poor abrasion resistance and water resistance. Consequently, the research on the contradiction between hydrophilicity and water resistance, as well as abrasion resistance and visible transmittance, has become a focus of superhydrophilic coatings. Herein, we design a ceramic-polymer superhydrophilic composite coating with a high density, strong cross-linking structure, and smooth surface. Because of its static water contact angle (WCA = 3.2°) and short water spreading time (ST = 1878 ms), the transparent composite coating exhibits anti-fogging performance. Meanwhile, it exhibits anti-fogging durability even after 400 Taber abrasion cycles under a 250 g load or immersion in boiling water for 30 min. Furthermore, the result of self-cleaning characterization and theoretical analysis demonstrate that the low surface roughness endows the composite coating with excellent self-cleaning properties. The composite coating can effectively scavenge oil and dust pollution on its surface in a humid environment. Thus, the developed composite coating in this work is potential in the anti-fogging and self-cleaning fields.

4.
RSC Adv ; 12(26): 16510-16516, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754893

RESUMO

Superamphiphobic coatings may significantly change the wettability of a substrate, and so are attractive for applications in aero/marine engineering, biotechnology, and heat transfer. However, the coatings are caught in a double bind when their durability is considered, as they are vulnerable to mechanical abrasion. Meanwhile, the wide use of organic solvents for preparing the coatings generates environmental pollution. Here, we present a waterborne superamphiphobic coating through one-step spraying that repels a wide range of liquids. By tailoring the repellence of the nano-silica to waterborne resin, a network structure is constructed to protect the embedded nano-silica from damage. Thus, the coatings are durable against 725 cycles of friction tester abrasion under a load of 250 g, showing a significant improvement in the mechanical durability by 3-25 times. Moreover, our coating also shows excellent comprehensive durability, including resistance to oil-flow erosion, falling sand impact, chemical attack, thermal treatment, etc. This strategy can be introduced to various waterborne resins, demonstrating its universality, and may offer a new insight to design sustainable superamphiphobic coatings for long-term practical applications.

5.
Sci Rep ; 9(1): 1639, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733488

RESUMO

Contact force-indentation depth measurements in contact experiments involving compliant materials, such as polymers and gels, show a hysteresis loop whose size depends on the maximum indentation depth. This depth-dependent hysteresis (DDH) is not explained by classical contact mechanics theories and was believed to be due to effects such as material viscoelasticity, plasticity, surface polymer interdigitation, and moisture. It has been observed that the DDH energy loss initially increases and then decreases with roughness. A mechanics model based on the occurrence of adhesion and roughness related small-scale instabilities was presented by one of the authors for explaining DDH. However, that model only applies in the regime of infinitesimally small surface roughness, and consequently it does not capture the decrease in energy loss with surface roughness at the large roughness regime. We present a new mechanics model that applies in the regime of large surface roughness based on the Maugis-Dugdale theory of adhesive elastic contacts and Nayak's theory of rough surfaces. The model captures the trend of decreasing energy loss with increasing roughness. It also captures the experimentally observed dependencies of energy loss on the maximum indentation depth, and material and surface properties.

6.
Cytotechnology ; 69(2): 277-287, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28120140

RESUMO

Parkinson's disease (PD) is one of the most common neural degenerative disease, affecting millions of people globally. Great progress has been made in the PD treatment, and one of the most promising one is the stem cell-based therapy. Thus, studies on the differentiation of neural stem cells (NSCs) are important to the advancement in PD therapy. In this study, we used the rat NSCs to elucidate the role of Lithium in the proliferation and differentiation of NSCs by immunostaining against Ki67 and BrdU analysis as well as immunostaining against specific neuronal markers. We concluded that lithium chloride (LiCl) treatment could enhance the proliferation in NSCs and promote the dopaminergic neuronal differentiation of NSCs in vitro. This process was potentially mediated by Wnt signaling pathway. Using the 6-OHDA-induced PD models, we provided evidence to show that LiCl had the capacity to enhance the proliferation in NSCs and differentiation towards dopaminergic neurons in vivo. The beneficial effect of LiCl treatment was further validated by the fact that the motor function as well as learning and memory was improved in the PD models through Rotarod test and Morris water maze analysis. The learning and memory improvement was further supported by the increase in dendrite spine density in PD models receiving LiCl-treated NSCs. Through this study, we concluded that Lithium plays an important role in promoting NSCs' neuronal differentiation in vitro and improving the symptoms of PD models in vivo. It is of great significance that this work showed the potential application of Lithium in the PD therapy in the future.

7.
Mater Sci Eng C Mater Biol Appl ; 41: 134-41, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907746

RESUMO

As a kind of antimicrobial agent, nano-silver composites have attracted a great deal of interest in biomedical applications. However, the typical loadings of silver nanoparticles (AgNPs) in such composites could result in dose-related cytotoxicity. In this study, a nano-silver composite leading to antimicrobial activity without cytotoxicity was fabricated by loading AgNPs into a dried alginate hydrogel. The biological performance of this composite mainly depended on the release of AgNPs, which needed to be triggered by the ion-exchange response and was further influenced by the loadings of AgNPs in the composite. The antimicrobial activity against E. coli and S. aureus demonstrated that the released silver no less than 678 ppb in the medium caused a reduction of 7log10CFU/mL (100%) bacteria. Significantly, the dose (~1.10×10(3) ppb) of released silver was not toxic and allowed attachment, and growth of MC3T3-E1 pre-osteoblast cells. These results supported that the composite was compatible with in vitro mammalian cells yet exhibited antimicrobial activity by carefully designing the loadings of AgNPs within the alginate. Thus, it indicated that the performance of this composite might permit management of bacterial infection in wound beds without impairment of wound healing.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Prata/química , Alginatos/química , Animais , Antibacterianos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Troca Iônica , Nanopartículas Metálicas/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Staphylococcus aureus/efeitos dos fármacos
8.
ScientificWorldJournal ; 2014: 406154, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24683338

RESUMO

A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology.


Assuntos
Nanotubos de Carbono , Análise Espectral Raman/métodos , Calibragem , Desenho de Equipamento , Modelos Teóricos , Nanotecnologia/métodos , Resistência ao Cisalhamento , Análise Espectral Raman/instrumentação
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(5): 1244-8, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23905328

RESUMO

The present paper studied the methodology of carbon nanotube (CNT) sensor applicable for the strain measurement in microscale. Based on the varieties of polarization configurations of the Raman spectrometers, a series of analytic expressions of CNT sensor were derived by applying the Raman properties of the CNT, such as the strain sensitivity and the polarization selectivity. From the viewpoint of metrology, the sensoring relationships corresponding to different polarization configurations were compared and contrasted with one another, which educed that the "bipolar homology" type is most suitable for the strain measurement where both the incident and scattered lights are continuously controllable and always remain parallel to each other. A new easy-realized control method for this configuration is introduced. The experiments proved that the method presented in this paper can effectively measure the in-plane strain components in microscale by polarized micro-Raman spectroscopy.

10.
Nanotechnology ; 22(22): 225704, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21454933

RESUMO

Deformation mechanisms of carbon nanotube (CNT) fibres under tensile loading are studied by means of in situ Raman spectroscopy to detect the CNT deformation and stress distributions in the fibres. The G' band in the Raman spectrum responds distinctly to the tensile stress in Raman shift, width and intensity. The G' band changes with the tensile deformation of the fibre at different stages, namely elastic deformation, strengthening and damage-fracture. It is deduced that the individual CNTs only deform elastically without obvious damage or bond breaking. The yield and fracture of fibres can be due to the slippage among the CNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...