Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 162: 531-546, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33773229

RESUMO

Trifolium pratense L. (red clover) is an important leguminous crop with great potential for Ag-contaminated environment remediation. Whereas, the molecular mechanisms of Ag tolerance in red clover are largely unknown. Red clover seedlings were used for physiological and transcriptomic investigation under 0, 20, 50, and 100 mg/L Ag+ stress in our research to reveal potential molecular resistance mechanism. Research showed that red clover possessed fairly strong Ag absorbance capacity, the Ag level reached 0.14 and 2.35 mg/g·FW in the leaves and roots under 100 mg/L AgNO3 stress condition. Root fresh weight, root dry weight, root water content, and photosynthetic pigments contents were significantly decreased with elevating AgNO3 concentration. Obvious withered plant tissue, microstructure disorder, and disrupted organelles were observed. In vitro evaluations (e.g., PI and DCFH-DA staining) represented that AgNO3 at high concentration (100 mg/L) exhibited obvious inhibition on cell viability, which was due possibly to the induction of reactive oxygen species (ROS) accumulation. A total of 44643 differentially expressed genes (DEGs) were identified under Ag stress, covering 27155 upregulated and 17488 downregulated genes. 12 stress-responsive DEGs was authenticated utilizing real-time quantitative PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the DEGs were mostly related to metal ion binding (molecular function), nucleus (cellular component), and defense response (biological process). Involved DEGs in sequence-specific DNA binding transcription factor activity, response to various hormones (e.g., abscisic acid, IAA/Auxin, salicylic acid, and etc), calcium signal transduction, and protein ubiquitination were concluded to play crucial roles in Ag tolerance of red clover. On the other hand, Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated several stress responsive pathways such as plant-pathogen interaction, phenylpropanoid biosynthesis, ubiquitin mediated proteolysis, hormone signal transduction, and autophagy. Several down-regulated genes (e.g., RSF2, RCD1, DOX1, and etc) were identified indicating possible metabolic disturbance. Besides, protein-protein interaction network (PPI) identified several pivotal genes such as ribosomal proteins, TIR, and ZAT.


Assuntos
Fabaceae , Trifolium , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Íons , Prata/farmacologia , Transcriptoma
2.
Environ Sci Pollut Res Int ; 27(18): 22735-22748, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323236

RESUMO

In this research, several biochemical variations in plant of Lemna minor L. were investigated to reflect Ag+ toxicity. Lemna minor L. changed colorless AgNO3 to colloidal brown at doses equal to and greater than 1 mg L-1. Optical and fluorescence microscopy revealed the presence of bright spots in roots of tested plant related to Ag/Ag2O-NPs. Photosynthetic pigment contents of Lemna minor L. declined upon exposure to Ag+ with an evidently higher decrease in chlorophyll a than in chlorophyll b. Similarly, Ag+ treatment caused an evident reduction in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). The reduction in antioxidase activity was significantly higher in POD than in SOD and CAT. Ag+ treatment resulted in a significant increment in the level of malondialdehyde (MDA) content as the judging criteria of cellular injury which showed sign of dose-related. The alterations occurred in RAPD profiles of treated samples following Ag+ toxicity containing loss of normal bands, appearance of new bands, and variation in band intensities compared with the normal plants. In addition, morphological character and biomass of Lemna minor L. subjected to increasing Ag+ concentrations were evaluated to reveal Ag+ toxicity. Our study demonstrated that Lemna minor L. have a high sensitivity to indicate fluctuation of water quality. It would be beneficial that modulating the genotype of Lemna minor L. to bear high proportion of contaminates.


Assuntos
Araceae , Prata , Clorofila , Clorofila A , Biomarcadores Ambientais , Técnica de Amplificação ao Acaso de DNA Polimórfico , Superóxido Dismutase
3.
Water Sci Technol ; 80(9): 1715-1724, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32039903

RESUMO

One of the effective ways to remove halogenated disinfection by-products (DBPs) from drinking water is the application of ultrafiltration technology. However, membrane fouling is an important factor affecting the service life and treatment effect. In this study, the electrocoagulation/oxidation-ultrafiltration (EC/O-UF) process was used to remove the precursor substance that produced DBPs, i.e. dissolved organic matters (DOMs). Operating parameters were optimized from the matching of different flocculant morphology to low concentration DOM. The degree of membrane fouling was characterized by analyzing DOMs concentration and membrane flux. The results showed that the optimal conditions for the production of Alb were: current density 10 A/m2, hydraulic retention time 10 min, and initial pH 5.0-7.0. Under these conditions, the production of flocculant Alb could reach 58-61%, 94-97% DOMs were removed by EC/O-UF.


Assuntos
Água Potável , Purificação da Água , Eletrocoagulação , Membranas Artificiais , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA