Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6273, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805629

RESUMO

Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI's exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.


Assuntos
Oxigenases de Função Mista , Policetídeos , Monensin , Antibacterianos , Alcenos
2.
Angew Chem Int Ed Engl ; 62(16): e202219034, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36789864

RESUMO

Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.


Assuntos
Cobre , Oxirredutases , Cobre/metabolismo , Estereoisomerismo , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Ceruloplasmina/metabolismo , Indóis
3.
Nature ; 611(7937): 715-720, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36130726

RESUMO

Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis1-3. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction4-6. Structural optimization through four rounds of directed evolution afforded proficient variants for the enantioselective intramolecular [2+2]-photocycloaddition of indole derivatives with good substrate generality and excellent enantioselectivities (up to 99% enantiomeric excess). A crystal structure of the photoenzyme-substrate complex elucidated the non-covalent interactions that mediate the reaction stereochemistry. This study expands the energy transfer reactivity7-10 of artificial triplet photoenzymes in a supramolecular protein cavity and unlocks an integrated approach to valuable enantioselective photochemical synthesis that is not accessible with either the synthetic or the biological world alone.


Assuntos
Biocatálise , Reação de Cicloadição , Enzimas , Processos Fotoquímicos , Biocatálise/efeitos da radiação , Transferência de Energia , Estereoisomerismo , Enzimas/genética , Enzimas/metabolismo , Enzimas/efeitos da radiação , Indóis/química , Especificidade por Substrato , Cristalização , Evolução Molecular Direcionada/métodos
4.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269764

RESUMO

Natural products are usually highly complicated organic molecules with special scaffolds, and they are an important resource in medicine. Natural products with complicated structures are produced by enzymes, and this is still a challenging research field, its mechanisms requiring detailed methods for elucidation. Flavin adenine dinucleotide (FAD)-dependent monooxygenases (FMOs) catalyze many oxidation reactions with chemo-, regio-, and stereo-selectivity, and they are involved in the synthesis of many natural products. In this review, we introduce the mechanisms for different FMOs, with the classical FAD (C4a)-hydroperoxide as the major oxidant. We also summarize the difference between FMOs and cytochrome P450 (CYP450) monooxygenases emphasizing the advantages of FMOs and their specificity for substrates. Finally, we present examples of FMO-catalyzed synthesis of natural products. Based on these explanations, this review will expand our knowledge of FMOs as powerful enzymes, as well as implementation of the FMOs as effective tools for biosynthesis.


Assuntos
Produtos Biológicos , Flavina-Adenina Dinucleotídeo , Sistema Enzimático do Citocromo P-450 , Dinitrocresóis , Flavina-Adenina Dinucleotídeo/química , Flavinas/química , Oxigenases/química
5.
Microorganisms ; 9(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946152

RESUMO

Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.

6.
Int J Clin Exp Med ; 8(10): 17644-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770354

RESUMO

This study aims to evaluate the applications and values of dual-source computed tomography (DSCT) intelligent optimal kV scanning technology (CARE kV) in coronary CT angiography (CCTA). 150 patients with normal body mass index were performed DSCT coronary angiography, then randomly divided into the "Semi", 120,100 and 80 kV Group, and the 2 "on" groups, with 30 patients in each group. The first 5 groups used the reference voltage as 120 kV, and the reference current as 400 mAs, while the other group used the reference voltage as 100 kV, and the reference current as 400 mAs. The image quality, average CT value, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were comparatively analyzed among the 5 groups. The image quality scores of the five groups showed no significant difference (P > 0.05); the average CT values and image noises had significance (P < 0.05), while SNR and CNR showed no significant difference (P > 0.05). The 80 kV group showed the biggest noise, with the CT value as 700 HU, while the radiation dose was the lowest, followed by the on group. As for the patients with normal body mass index (BMI), CARE kV-"on" could obtain high-quality images and lower radiation dose for CCTA, while the operation was simple and convenient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...