Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Hazard Mater ; 458: 131988, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418963

RESUMO

Lipopolysaccharide (LPS), also known as endotoxin, is a component of the outer membrane of gram-negative bacteria. LPS is released into the surrounding environment during bacterial death and lysis. Due to its chemical and thermal stability, LPS can be detected anywhere and easily exposed to humans and animals. Previous studies have shown that LPS causes hormonal imbalances, ovarian failure, and infertility in mammals. However, the potential mechanisms remain unclear. In this study, we investigated the effects and mechanisms of LPS on tryptophan degradation, both in vivo and in vitro. The effects of kynurenine, a tryptophan derivative, on granulosa cell function and reproductive performance were explored. Results showed that p38, NF-κB, and JNK signaling pathways were involved in LPS-induced Ido1 expressions and kynurenine accumulation. Furthermore, the kynurenine decreased estradiol production, but increased granulosa cell proliferation. In vivo, experiments showed that kynurenine decreased estradiol and FSH production and inhibited ovulation and corpus luteum formation. Additionally, pregnancy and offspring survival rates decreased considerably after kynurenine treatment. Our findings suggest that kynurenine accumulation disrupts hormone secretion, ovulation, corpus luteal formation, and reproductive performance in mammals.


Assuntos
Cinurenina , Ovário , Gravidez , Feminino , Humanos , Animais , Cinurenina/metabolismo , Ovário/metabolismo , Triptofano/metabolismo , Lipopolissacarídeos/farmacologia , Estradiol/metabolismo , Mamíferos/metabolismo
2.
J Anim Sci Biotechnol ; 14(1): 94, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430306

RESUMO

BACKGROUND: During mammalian pre-implantation embryonic development (PED), the process of maternal-to-zygote transition (MZT) is well orchestrated by epigenetic modification and gene sequential expression, and it is related to the embryonic genome activation (EGA). During MZT, the embryos are sensitive to the environment and easy to arrest at this stage in vitro. However, the timing and regulation mechanism of EGA in buffaloes remain obscure. RESULTS: Buffalo pre-implantation embryos were subjected to trace cell based RNA-seq and whole-genome bisulfite sequencing (WGBS) to draw landscapes of transcription and DNA-methylation. Four typical developmental steps were classified during buffalo PED. Buffalo major EGA was identified at the 16-cell stage by the comprehensive analysis of gene expression and DNA methylation dynamics. By weighted gene co-expression network analysis, stage-specific modules were identified during buffalo maternal-to-zygotic transition, and key signaling pathways and biological process events were further revealed. Programmed and continuous activation of these pathways was necessary for success of buffalo EGA. In addition, the hub gene, CDK1, was identified to play a critical role in buffalo EGA. CONCLUSIONS: Our study provides a landscape of transcription and DNA methylation in buffalo PED and reveals deeply the molecular mechanism of the buffalo EGA and genetic programming during buffalo MZT. It will lay a foundation for improving the in vitro development of buffalo embryos.

3.
Anim Biotechnol ; 34(9): 4783-4792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37022008

RESUMO

The proliferation and myogenic differentiation of muscle stem cells (MuSCs) are important factors affecting muscle development and beef quality. There is increasing evidence that circRNAs can regulate myogenesis. We found a novel circRNA, named circRRAS2 that is significantly upregulated in the differentiation phase of bovine MuSCs. Here, we aimed to determine its roles in the proliferation and myogenic differentiation of these cells. The results showed that circRRAS2 was expressed in several bovine tissues. CircRRAS2 inhibited MuSCs proliferation and promoted myoblast differentiation. In addition, chromatin isolation by using RNA purification and mass spectrometry in differentiated muscle cells identified 52 RNA-binding proteins that could potentially bind to circRRAS2, in order to regulate their differentiation. The results suggest that circRRAS2 could be a specific regulator of myogenesis in bovine muscle.HighlightsCircRRAS2 expression is higher in DM cells than in GM cells.CircRRAS2 could significantly inhibit the proliferation and apoptosis of bovine MuSCs.CircRRAS2 promotes the differentiation of bovine MuSCs into myotubes.CircRRAS2 may exert regulatory effects through multiple RNA binding proteins.


Assuntos
Células Satélites de Músculo Esquelético , Bovinos , Animais , Diferenciação Celular/genética , Células Cultivadas , Linhagem Celular , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Proliferação de Células/genética
4.
Theriogenology ; 205: 50-62, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086585

RESUMO

MicroRNAs (miRNAs) are involved in many physiological processes such as signal transduction, cell proliferation and apoptosis. Many studies have shown that miRNAs can regulate the process of follicular development. Our previous studies found that the expression of miR-29c-5p in buffalo atretic follicles was much higher than that in healthy follicles, suggesting that this miRNA may participate in the process of buffalo follicular atresia. In this study, we aim to explore to the role and molecular mechanisms of miR-29c-5p on the functions of buffalo granulosa cells (GCs). GCs cultured in vitro were transfected with miR-29c-5p mimics and its inhibitor, respectively, and it was found that the mimics significantly increased the apoptotic rate of GCs. They also inhibited the proliferation of GCs and the secretion of steroid hormones. The effect of the inhibitor was opposite to that of the mimics. MiR-29c-5p was subsequently shown to target the inhibin subunit beta A, (INHBA). Overexpression of INHBA could promote the production of activin A and inhibin A, and then reverse the effect of miR-29c-5p on buffalo GCs. In conclusion, these results suggest that miR-29c-5p promotes apoptosis and inhibits proliferation and steroidogenesis by targeting INHBA in buffalo GCs. This may ultimately promote atresia in buffalo follicles.


Assuntos
Búfalos , MicroRNAs , Animais , Feminino , Apoptose/genética , Búfalos/genética , Proliferação de Células , Atresia Folicular/genética , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , Folículo Ovariano
5.
Int J Biol Macromol ; 224: 1118-1128, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302480

RESUMO

Cholesterol is a precursor to steroid hormones and can be obtained from serum LDL or de novo synthesis in steroidogenic cells. Before luteinizing hormone (LH) surge-induced ovulation, follicles remain avascular, and cholesterol required for progesterone production in granulosa cells (GCs) is derived from de novo biosynthesis. Previous studies have verified that the intrafollicular TGF-ß1 plays inhibitory roles in GCs luteinization, vascularization, and progesterone production. Nevertheless, the regulatory function of TGF-ß1 on de novo cholesterol synthesis in granulosa-lutein (GL) cells remains largely unknown. We aim to investigate this aspect in this study using in vivo cultured human GL cells. Our results suggested that TGF-ß1 significantly suppresses intracellular cholesterol levels and down-regulates the expression of the final step enzyme, DHCR24, that catalyzes de novo cholesterol synthesis. We used specific inhibitors and siRNA-mediated knockdown approaches demonstrate that TGF-ß1 suppression of DHCR24 expression in GL cells is mediated by the GSK-3ß/EZH2/H3K27me3 signaling pathway. Further ChIP assays revealed that elevated H3K27me3 levels in the promoter region of DHCR24 play a vital role in TGF-ß1-induced DHCR24 down-regulation, and RNA-sequencing results confirmed these findings. Notably, our study provides a novel insight into the molecular mechanisms by which TGF-ß1 suppresses de novo cholesterol biosynthesis in GL cells.


Assuntos
Células Lúteas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Feminino , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Células Lúteas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Histonas/metabolismo , Progesterona , Células Cultivadas , Transdução de Sinais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
6.
Reprod Biol ; 22(4): 100705, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308873

RESUMO

Type I collagen is the most abundant extracellular matrix (ECM) protein in the mammalian ovary, and comprises two COL1A1 subunits and one COL1A2 subunit. Matrix metalloproteinase 1 (MMP1) is a typical collagenase of type I collagen, that can be detected in ovarian follicles and early corpus luteum. Previous studies demonstrated that MMP1-mediated degradation of type I collagen plays a functional role in regulating corpus luteum formation, and transforming growth factor ß1 (TGF-ß1) inhibits luteinization and progesterone production in granulosa cells (GCs). Whether TGF-ß1 regulates the expression of MMP1, COL1A1, or the deposition of type I collagen during corpus luteum formation remains to be elucidated. This study aimed to investigate the molecular mechanisms through which TGF-ß1 regulates MMP1 expression and type I collagen deposition in GCs. Our results show that TGF-ß1 upregulates COL1A1 expressions and downregulates MMP1 expression. Inhibition approaches, including pharmacological inhibitors such as p38 inhibitor (SB203580), ERK1/2 inhibitor (U0126), AKT inhibitor (LY294002), and GSK-3ß inhibitor (LiCl), as well as knockdown using siRNA specific to these genes, were used. Our results suggest that TGF-ß1 decreases MMP1 production via an ALK5-mediated AKT/GSK-3ß-dependent signaling pathway, and a decrease in MMP1 levels and an increase in COL1A1 levels synergistically promote type I collagen deposition in GCs. Collectively, these findings provide novel insights into the underlying molecular mechanisms by which TGF-ß1 upregulates type I collagen deposition in GCs.


Assuntos
Colágeno Tipo I , Fator de Crescimento Transformador beta1 , Animais , Feminino , Fator de Crescimento Transformador beta1/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Baixo , Células da Granulosa/metabolismo , Transdução de Sinais , Células Cultivadas , Mamíferos/metabolismo
7.
J Agric Food Chem ; 70(29): 9166-9178, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35837734

RESUMO

Myogenesis is an essential process that can affect the yield and quality of beef. Transcriptional studies have shown that histone deacetylase 11 (HDAC11) was differentially expressed in muscle tissues of 6 and 18 month old Longlin cattle, but its role in the regulation of myogenesis remains unclear. This study aimed to determine the role of HDAC11 in the proliferation and differentiation of bovine muscle stem cells (MuSCs). HDAC11 promoted MuSC proliferation by activating Notch signaling and inhibited myoblast differentiation by reducing MyoD1 transcription. In addition, overexpression of HDAC11 inhibited the repair regeneration process of muscle in mice. HDAC11 was found to be a novel key target for the control of myogenesis, and this is a theoretical basis for the development of HDAC11-specific modulators as a new strategy to regulate myogenesis.


Assuntos
Histona Desacetilases , Mioblastos , Animais , Bovinos , Diferenciação Celular , Proliferação de Células , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Regeneração/genética , Transdução de Sinais
8.
J Steroid Biochem Mol Biol ; 221: 106115, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460848

RESUMO

The follicular fluid of mammals has a high abundance of bile acids and these have proven to be closely related to the follicular atresia. However, the origin and content of bile acids in follicular fluid and its mechanisms on follicular atresia remain largely unknown. In this work, we analyzed the origin of bile acids in buffalo follicles by using cell biology studies, and quantified the subspecies of bile acids in follicular fluid from healthy follicles (HF) and atretic follicles (AF) by targeted metabolomics. The function of differential bile acids on follicular granulosa cells was also studied. The results showed that the bile acids transporters were abundantly expressed in ovarian tissues, but the rate-limiting enzymes were not, which was consistent with the inability of cultured follicular cells to convert cholesterol into bile acids. Targeted metabolomics analysis revealed thirteen differential subspecies of bile acids between HF and AF. The free bile acids were significant down-regulated and their conjugated forms were significantly up-regulated in AF as compared to HF. Finally, cell biological validation found a specific differentially conjugated bile acid, glycodeoxycholic acid (GDCA), which could promote follicular granulosa cell apoptosis and reduce steroid hormone secretion. In summary, our studies suggest that bile acids in buffalo follicles are transported from the blood rather than being synthesized within the follicles. The conjugated bile acids such as GDCA, accumulate in buffalo follicles, and may accelerate atresia by promoting apoptosis of granulosa cells and inhibiting steroid hormone production. These results will provide new clues for studying the physiological role and mechanism of bile acids involved in buffalo follicular atresia.


Assuntos
Búfalos , Atresia Folicular , Animais , Apoptose/fisiologia , Ácidos e Sais Biliares , Estradiol/análise , Feminino , Ácido Glicodesoxicólico , Células da Granulosa , Metabolômica , Esteroides
9.
BMC Genomics ; 23(1): 267, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387588

RESUMO

BACKGROUND: The growth and development of muscle stem cells (MuSCs) are significant events known to affect muscle plasticity, disease, meat production, and meat quality, which involves the types and functions of mRNA and non-coding RNA. Here, MuSCs were cultured from Guangxi fetal cattle. RNA sequencing was used to analyze the RNA expression of mRNA and non-coding RNAs during the cell proliferation and differentiation phases. RESULTS: Two thousand one hundred forty-eight mRNAs and 888 non-coding RNAs were differentially expressed between cell proliferation and differentiation phases, including 113 miRNAs, 662 lncRNAs, and 113 circRNAs. RT-qPCR verified the differential expression levels of mRNAs and non-coding RNAs, and the differentially expressed circUBE2Q2 was subsequently characterized. Expression profile analysis revealed that circUBE2Q2 was abundant in muscle tissues and intramuscular fat. The expression of cricUBE2Q2 was also significantly upregulated during MuSCs myogenic differentiation and SVFs adipogenic differentiation and decreased with age in cattle muscle tissue. Finally, the molecular mechanism of circUBE2Q2 regulating MuSCs function that affects skeletal muscle development was investigated. The results showed that circUBE2Q2 could serve as a sponge for miR-133a, significantly promoting differentiation and apoptosis of cultured MuSCs, and inhibiting proliferation of MuSCs. CONCLUSIONS: CircUBE2Q2 is associated with muscle growth and development and induces MuSCs myogenic differentiation through sponging miR-133a. This study will provide new clues for the mechanisms by which mRNAs and non-coding RNAs regulate skeletal muscle growth and development, affecting muscle quality and diseases.


Assuntos
MicroRNAs , Desenvolvimento Muscular , Animais , Bovinos , Diferenciação Celular/genética , China , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculos/metabolismo , Mioblastos/metabolismo , RNA Mensageiro/genética
10.
Theriogenology ; 180: 113-120, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34971972

RESUMO

Theca cells (TCs) play an important role in follicular development and atresia. TCs synthesize androgens that act as substrate for granulosa cells aromatization to estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo TCs remain unclear. In the present study, the impacts of hypoxic conditions (5% oxygen) on androgen synthesis in buffalo TCs were examined. The results showed that hypoxia improved both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3ß-HSD) and the secretion levels of testosterone in buffalo TCs. Hypoxic conditions promoted the sensitivity of buffalo TCs to LH. Furthermore, inhibition of PI3K/AKT signaling pathway reduced both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, and 3ß-HSD) and the secretion levels of testosterone in hypoxia-cultured buffalo TCs. Besides, inhibition of PI3K/AKT signaling pathway lowered the sensitivity of buffalo TCs to LH under hypoxic conditions. This study indicated that hypoxia enhanced the steroidogenic competence of buffalo TCs main through activating PI3K/AKT signaling pathway and subsequently facilitating the responsiveness of TCs to LH. This study provides a basis for further exploration of ovarian endocrine mechanism for steroidogenesis.


Assuntos
Búfalos , Células Tecais , Animais , Células Cultivadas , Feminino , Células da Granulosa , Hipóxia/veterinária , Fosfatidilinositol 3-Quinases/genética
11.
Reprod Domest Anim ; 57(2): 185-195, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741362

RESUMO

Glycolysis in follicular granulosa cells (GCs) is the primary source of energy metabolism substrate of oocytes and is closely related to follicular development in mammals. Many physiological functions of GCs are regulated by follicle-stimulating hormone (FSH). In contrast, whether FSH regulates the glycolysis of GCs and its mechanism remains unclear. This study explored the correlation between FSH concentration and glycolysis level of GCs from different diameters of water buffalo follicles, and further explored the mechanism of FSH regulation in glycolysis in vitro cultured GCs. Results showed the variation trend of lactic acid concentration in follicular fluid and the expression level of glycolysis-related genes in GCs were consistent with the variation trend of FSH concentration in follicular fluid from follicles with different diameters. When GCs were treated with FSH in vitro, the expression level of glycolysis-related genes, lactate production and glucose uptake increased correspondingly (p < .05). Furthermore, we found that expression trend of AMPK/Sirtuin1 (SIRT1) pathway-related genes in GCs was consistent with the expression trend of glycolysis-related genes and was positively correlated with FSH concentrations in vivo or cultured in vitro. Activation of SIRT1 increased the expression level of glycolytic key proteins and lactic acid production in GCs, while inhibition of SIRT1 showed the opposite effect. In general, glycolysis in water buffalo GCs in vivo or cultured in vitro was positively correlated with FSH concentration. AMPK/SIRT1 pathway plays an important role in the regulation of FSH on glycolysis in GCs. Our findings will enrich the understanding of FSH regulating the development of water buffalo follicles.


Assuntos
Búfalos , Hormônio Foliculoestimulante , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Búfalos/metabolismo , Células Cultivadas , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Glicólise , Células da Granulosa/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
12.
Reprod Domest Anim ; 57(2): 141-148, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34057767

RESUMO

Granulosa cells (GCs) play a crucial role in follicular development and atresia. Previous studies have showed that GCs in the form of monolayer influenced in vitro maturation (IVM) of oocytes. However, the effects of GCs in the form of conditioned medium and monolayer on IVM and development competence of buffalo oocytes remain unclear. In the present study, we examined the impacts of GC-conditioned medium (GCCM) and monolayer GC on maturation efficiency and embryo development of buffalo oocytes after parthenogenetic activation (PA). Our results showed that GCCM that was collected on day 2 and added to IVM medium at a 20% proportional level (2 days and 20%) exerted significant negative effects on IVM rate (41.6% vs. 44.5%), but significantly enhanced embryo development (oocyte cleavage, 81.3% vs. 69.3%; blastocyst formation, 36.3% vs. 29.3%) of buffalo oocytes after PA compared with the control group. Furthermore, monolayer GC significantly reduced both maturation efficiency (40.2% vs. 44.5%) and embryo development (oocyte cleavage, 60.6% vs. 69.3%; blastocyst formation, 20.6% vs. 29.3%) of buffalo oocytes after PA compared to the control group. Our study indicated that GCs in the form of GCCM (2 days and 20%) and monolayer GC had different effects on IVM and subsequent parthenogenetic development of buffalo oocytes.


Assuntos
Búfalos , Técnicas de Maturação in Vitro de Oócitos , Animais , Blastocisto , Meios de Cultivo Condicionados , Desenvolvimento Embrionário , Feminino , Células da Granulosa , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos
13.
Front Cell Dev Biol ; 9: 728821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733844

RESUMO

Precise regulation of angiogenesis is required for organ development, wound repair, and tumor progression. Here, we identified a novel gene, nxhl (New XingHuo light), that is conserved in vertebrates and that plays a crucial role in vascular integrity and angiogenesis. Bioinformatic analysis uncovered its essential roles in development based on co-expression with several key developmental genes. Knockdown of nxhl in zebrafish causes global and pericardial edema, loss of blood circulation, and vascular defects characterized by both reduced vascularization in intersegmental vessels and decreased sprouting in the caudal vein plexus. The nxhl gene also affects human endothelial cell behavior in vitro. We found that nxhl functions in part by targeting VE-PTP through interaction with NCL (nucleolin). Loss of ptprb (a VE-PTP ortholo) in zebrafish resulted in defects similar to nxhl knockdown. Moreover, nxhl deficiency attenuates tumor invasion and proteins (including VE-PTP and NCL) associated with angiogenesis and EMT. These findings illustrate that nxhl can regulate angiogenesis via a novel nxhl-NCL-VE-PTP axis, providing a new therapeutic target for modulating vascular formation and function, especially for cancer treatment.

14.
Front Vet Sci ; 8: 680182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336976

RESUMO

Granulosa cells (GCs) are the main supporting cells in follicles and play an important role in the regulation of oocyte maturation and follicular atresia. Accumulating evidence indicates that non-coding RNAs participate in regulation of the physiological function of GCs. However, whole-transcriptome analysis for GCs of buffalo has yet to be reported. In this study, healthy follicles (HFs) and atretic follicles (AFs) were defined according to the apoptosis rate of GCs and the hormone level in follicular fluid. GCs were collected from HFs and AFs (n = 15, 5 < n < 8 mm) for whole-transcriptome analysis using second-generation high-throughput sequencing. A total of 1,861 and 1,075 mRNAs, 159 and 24 miRNAs, and 123 and 100 lncRNAs, were upregulated and downregulated between HFs and AFs, respectively. Enrichment of functions and signaling pathways of these differentially expressed (DE) genes showed that most of DEmRNAs and targets of DEmiRNAs were annotated to the categories of ECM-receptor interaction and focal adhesion, as well as PI3K-AKT, mTOR, TGF-beta, Rap1, and estrogen signaling pathways. The competing endogenous RNA (CeRNA) network was also constructed based on the ceRNA theory which further revealed regulatory roles of these DERNAs in GCs of buffalo follicles. Finally, we validated that lnc4040 regulated the expression of Hif1a as miR-709 sponge in a ceRNA mechanism, suggesting their critical functions in GCs of buffalo follicles. These results show that lncRNAs are dynamically expressed in GCs of HFs and AFs, and interacting with target genes in a ceRNA manner, suggesting their critical functions in buffalo follicular development and atresia.

15.
Front Genet ; 12: 643497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306003

RESUMO

Buffalo breeding has become an important branch of the beef cattle industry. Hence, it is of great significance to study buffalo meat production and meat quality. However, the expression profiles of mRNA and long non-coding RNAs (lncRNA) molecules in muscle stem cells (MuSCs) development in buffalo have not been explored fully. We, therefore, performed mRNA and lncRNA expression profiling analysis during the proliferation and differentiation phases of MuSCs in buffalo. The results showed that there were 4,820 differentially expressed genes as well as 12,227 mRNAs and 1,352 lncRNAs. These genes were shown to be enriched in essential biological processes such as cell cycle, p53 signaling pathway, RNA transport and calcium signaling pathway. We also identified a number of functionally important genes, such as MCMC4, SERDINE1, ISLR, LOC102394806, and LOC102403551, and found that interference with MYLPF expression significantly inhibited the differentiation of MuSCs. In conclusion, our research revealed the characteristics of mRNA and lncRNA expression during the differentiation of buffalo MuSCs. This study can be used as an important reference for the study of RNA regulation during muscle development in buffalo.

16.
J Steroid Biochem Mol Biol ; 212: 105944, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144152

RESUMO

Follicular atresia is a complex physiological process, which results in the waste of follicles and oocytes from the ovary. Elucidating the physiological mechanism of follicular atresia will hopefully reverse the fate of follicles, thereby improve the reproductive efficiency of female animals. However, there are still many gaps to be filled during the follicular atresia process. In this study, we first comprehensively summarized and compared a variety of methods to classify Chinese buffalo follicles with different extent of atresia. Then follicular fluid and granulosa cells from the corresponding follicles with different extent of atresia were collected for non-targeted metabolomics and transcriptomics analysis, respectively. After the detection and analysis of 129 follicles, a reasonable classification standard was formed: on the basis of morphological classification, the relative concentrations of estradiol (E2) and progesterone (PROG) in the follicular fluid were determined, follicles with an estradiol-to-progesterone (E2/PROG) ratio >5 were classified as healthy follicles (HF), 1≤ E2/PROG ≤5 as early atretic follicles (EF) and E2/PROG <1 as late atretic follicles (LF). Correspondingly, follicles with granulosa cells apoptosis rate less than 15 % were divided into HF, 15%-25% were classified as EF and more than 25 % were classified as LF. The integration analysis of non-targeted metabolomics and transcriptomics highlights the following three aspects: (1) Atresia seriously damaged the lipid metabolism homeostasis of follicle, in which PPARγ play important roles. (2) Energy metabolism and nucleotide metabolism of atretic follicles were inhibited. (3) Bilirubin is involved in follicular atresia, and it may be the main force to prevent lipid peroxidation in follicular cells. In summary, results of this study provide new understanding of the molecular mechanisms of Chinese buffalo follicular atresia.


Assuntos
Búfalos/genética , Búfalos/metabolismo , Atresia Folicular/genética , Atresia Folicular/metabolismo , Animais , Apoptose , Metabolismo dos Carboidratos , Feminino , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Metaboloma , Metabolômica , Nucleotídeos/metabolismo , Folículo Ovariano/metabolismo , Transcriptoma
17.
Cell Reprogram ; 23(3): 158-167, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956517

RESUMO

Past researches have shown that pluripotency maintenance of naive and primed-state pluripotent stem cells (PSCs) depends on different signaling pathways, and naive-state PSCs possess the ability to produce chimeras when they are introduced into a blastocyst. Considering porcine is an attractive model for preclinical studies, many researches about pig induced pluripotent stem cells (piPSCs) have been reported. Some cytokines and small molecule compounds could transform primed piPSCs into naive state. However, there are no suitable culture conditions for generation of naive-state piPSCs with high efficiency; other small molecule compounds need further exploration. In this study, we investigated whether p38 MAPK and JNK signal pathway inhibitor SB203580 and SP600125 could be of benefit for acquiring naive-state piPSCs. By comparing reprogramming efficiencies under conditions of different donor cells and culture environment, we found that porcine bone marrow mesenchymal stem cells (PBMSCs) have higher efficiency on piPSC induction, and the culture condition of CHIR99021+PD0325901(2i)+Lif+bFGF is more suitable for subculturing of piPSCs. Our results also indicate that SB203580 and SP600125 could promote reprogramming of PBMSCs into naive-like state piPSCs. These results provide guidance for choosing donor cells, culture conditions, and research of different state iPSCs during the process of reprogramming pig somatic cells.


Assuntos
Antracenos/farmacologia , Diferenciação Celular , Reprogramação Celular , Imidazóis/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Piridinas/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Suínos , Porco Miniatura
18.
Mol Ther Nucleic Acids ; 24: 352-368, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33868781

RESUMO

Skeletal muscle development is a complex and highly orchestrated biological process mediated by a series of myogenesis regulatory factors. Numerous studies have demonstrated that circular RNAs (circRNAs) are involved in muscle differentiation, but the exact molecular mechanisms involved remain unclear. Here, we analyzed the expression of circRNAs at the adult and embryo development stages of cattle musculus longissimus. A stringent set of 1,318 circRNAs candidates were identified, and we found that 495 circRNAs were differentially expressed between embryonic and adult tissue libraries. We subsequently focused on one of the most downregulated circRNAs (using the adult stage expression as control), and this was named muscle differentiation-associated circular RNA (circMYBPC1). With RNA binding protein immunoprecipitation (RIP) and RNA pull-down assays, circMYBPC1 was identified to promote myoblast differentiation by directly binding miR-23a to relieve its inhibition on myosin heavy chain (MyHC). In addition, RIP assays demonstrated that circMYBPC1 could directly bind MyHC protein. In vivo observations also suggested that circMYBPC1 may stimulate skeletal muscle regeneration after muscle damage. These results revealed that the novel non-coding circRNA circMYBPC1 promotes differentiation of myoblasts and may promote skeletal muscle regeneration. Our results provided a basis for in-depth analysis of the role of circRNA in myogenesis and muscle diseases.

19.
Cell Reprogram ; 23(2): 127-138, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861638

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) from livestock are valuable resources for animal reproduction and veterinary therapeutics. Previous studies have shown that BMSCs were prone to malignant transformation of mesenchymal-to-epithelial transition in vitro, which can cause many barriers to further application of BMSCs. The transforming growth factor ß (TGF-ß) signaling pathway has been widely studied as the most important signaling pathway involved in regulating mesenchymal features of BMSCs. However, the effects of the TGF-ß signaling pathway on mesenchymal characteristics of buffalo BMSCs (bBMSCs) remain unclear. In the present study, the impacts of the growth factor, TGF-ß1, on cell proliferation, apoptosis, migration, and karyotype of bBMSCs were tested. Besides, the effects of TGF-ß1 on pluripotency, mesenchymal markers, and epithelial-to-mesenchymal transition (EMT)-related gene expression of bBMSCs were also examined. Results showed that the suitable concentration and time of TGF-ß1 treatment (2 ng/mL and 24 hours) promoted cell proliferation and significantly reduced cell apoptosis (p < 0.05) in bBMSCs. The cell migration capacity and normal karyotype rate of bBMSCs were significantly (p < 0.05) improved under TGF-ß1 treatment. The expression levels of pluripotency-related genes (Sox2 and Nanog) and mesenchymal markers (N-cadherin and Fn1) were significantly (p < 0.05) up-regulated under TGF-ß1 treatment. Furthermore, TGF-ß1 activated the EMT process, thereby contributing to significantly enhancing the expression levels of EMT-related genes (Snail and Slug) (p < 0.05), which in turn improved maintenance of the mesenchymal nature in bBMSCs. Finally, bBMSCs underwent self-transformation more easily and efficiently and exhibited more characteristics of mesenchymal stem cells under TGF-ß1 treatment. This study provides theoretical guidance for elucidating the detailed mechanism of the TGF-ß signaling pathway in mesenchymal feature maintenance of bBMSCs and is of significance to establish a stable culture system of bBMSCs.


Assuntos
Diferenciação Celular , Transição Epitelial-Mesenquimal , Células-Tronco Mesenquimais/citologia , Fator de Crescimento Transformador beta1/farmacologia , Animais , Apoptose , Búfalos , Movimento Celular , Proliferação de Células , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais
20.
Microsc Microanal ; 27(2): 409-419, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33478599

RESUMO

Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.


Assuntos
Búfalos , Histona Desmetilases , Animais , Blastocisto , Embrião de Mamíferos , Desenvolvimento Embrionário , Técnicas de Transferência Nuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...