Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.434
Filtrar
1.
Nat Cell Biol ; 26(7): 1062-1076, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951708

RESUMO

Ras has been extensively studied as a promoter of cell proliferation, whereas few studies have explored its role in migration. To investigate the direct and immediate effects of Ras activity on cell motility or polarity, we focused on RasGAPs, C2GAPB in Dictyostelium amoebae and RASAL3 in HL-60 neutrophils and macrophages. In both cellular systems, optically recruiting the respective RasGAP to the cell front extinguished pre-existing protrusions and changed migration direction. However, when these respective RasGAPs were recruited uniformly to the membrane, cells polarized and moved more rapidly, whereas targeting to the back exaggerated these effects. These unexpected outcomes of attenuating Ras activity naturally had strong, context-dependent consequences for chemotaxis. The RasGAP-mediated polarization depended critically on myosin II activity and commenced with contraction at the cell rear, followed by sustained mTORC2-dependent actin polymerization at the front. These experimental results were captured by computational simulations in which Ras levels control front- and back-promoting feedback loops. The discovery that inhibiting Ras activity can produce counterintuitive effects on cell migration has important implications for future drug-design strategies targeting oncogenic Ras.


Assuntos
Actomiosina , Movimento Celular , Polaridade Celular , Dictyostelium , Proteínas ras , Dictyostelium/metabolismo , Dictyostelium/genética , Células HL-60 , Actomiosina/metabolismo , Humanos , Proteínas ras/metabolismo , Proteínas ras/genética , Macrófagos/metabolismo , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Neutrófilos/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Animais , Quimiotaxia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Actinas/metabolismo , Simulação por Computador , Camundongos , Transdução de Sinais
2.
Biotechnol Adv ; : 108404, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002783

RESUMO

Two-component systems (TCSs) are prevalent signaling pathways in bacteria. These systems mediate phosphotransfer between histidine kinase and a response regulator, facilitating responses to diverse physical, chemical, and biological stimuli. Advancements in synthetic and structural biology have repurposed TCSs for applications in monitoring heavy metals, disease-associated biomarkers, and the production of bioproducts. However, the utility of many TCS biosensors is hindered by undesired performance due to the lack of effective engineering methods. Here, we briefly discuss the architecture and regulatory mechanisms of TCSs. We also summarize the recent advancements in TCS engineering by experimental or computational-based methods to fine-tune the biosensor functional parameters, such as response curve and specificity. Engineered TCSs have great potential in the medical, environmental, and biorefinery fields, demonstrating a crucial role in a wide area of biotechnology.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39003438

RESUMO

PURPOSE: Differentiating pulmonary lymphoma from lung infections using CT images is challenging. Existing deep neural network-based lung CT classification models rely on 2D slices, lacking comprehensive information and requiring manual selection. 3D models that involve chunking compromise image information and struggle with parameter reduction, limiting performance. These limitations must be addressed to improve accuracy and practicality. METHODS: We propose a transformer sequential feature encoding structure to integrate multi-level information from complete CT images, inspired by the clinical practice of using a sequence of cross-sectional slices for diagnosis. We incorporate position encoding and cross-level long-range information fusion modules into the feature extraction CNN network for cross-sectional slices, ensuring high-precision feature extraction. RESULTS: We conducted comprehensive experiments on a dataset of 124 patients, with respective sizes of 64, 20 and 40 for training, validation and testing. The results of ablation experiments and comparative experiments demonstrated the effectiveness of our approach. Our method outperforms existing state-of-the-art methods in the 3D CT image classification problem of distinguishing between lung infections and pulmonary lymphoma, achieving an accuracy of 0.875, AUC of 0.953 and F1 score of 0.889. CONCLUSION: The experiments verified that our proposed position-enhanced transformer-based sequential feature encoding model is capable of effectively performing high-precision feature extraction and contextual feature fusion in the lungs. It enhances the ability of a standalone CNN network or transformer to extract features, thereby improving the classification performance. The source code is accessible at https://github.com/imchuyu/PTSFE .

4.
Sci Total Environ ; 947: 174538, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977090

RESUMO

Arsenic (As) is recognized as a potent environmental contaminant associated with bladder carcinogenesis. However, its molecular mechanism remains unclear. Metabolic reprogramming is one of the hallmarks of cancer and is as a central feature of malignancy. Here, we performed the study of cross-talk between the mammalian target of rapamycin complex 1 (mTORC1)/ Hypoxia-inducible factor 1 alpha (HIF-1α) pathway and aerobic glycolysis in promoting the proliferation and migration of bladder epithelial cells treated by arsenic in vivo and in vitro. We demonstrated that arsenite promoted N-methyl-N-nitrosourea (MNU)-induced tumor formation in the bladder of rats and the malignant behavior of human ureteral epithelial (SV-HUC-1) cell. We found that arsenite positively regulated the mTORC1/HIF-1α pathway through glucose transporter protein 1 (GLUT1), which involved in the malignant progression of bladder epithelial cells relying on glycolysis. In addition, pyruvate kinase M2 (PKM2) increased by arsenite reduced the protein expressions of succinate dehydrogenase (SDH) and fumarate hydratase (FH), leading to the accumulation of tumor metabolites of succinate and fumarate. Moreover, heat shock protein (HSP)90, functioning as a chaperone protein, stabilized PKM2 and thereby regulated the proliferation and aerobic glycolysis in arsenite treated SV-HUC-1 cells. Taken together, these results provide new insights into mTORC1/HIF-1α and PKM2 networks as critical molecular targets that contribute to the arsenic-induced malignant progression of bladder epithelial cells.

5.
Methods Mol Biol ; 2814: 107-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954201

RESUMO

A given protein can perform numerous roles in a cell with its participation in protein complexes and distinct localization within the cell playing a critical role in its diverse functions. Thus, the ability to artificially dimerize proteins and recruit proteins to specific locations in a cell has become a powerful tool for the investigation of protein function and the understanding of cell biology. Here, we discuss two systems that have been used to activate signal transduction pathways, a chemically inducible dimerization (CID) and a light-inducible (LI) system to control signaling and cytoskeletal regulation in a spatial and temporal manner.


Assuntos
Optogenética , Multimerização Proteica , Transdução de Sinais , Optogenética/métodos , Humanos , Animais , Luz , Transporte Proteico
6.
Cell Chem Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38986618

RESUMO

RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.

7.
Angew Chem Int Ed Engl ; : e202412179, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990010

RESUMO

Here, we report a strategy enabling triple switchable chemo-, regio-, and stereodivergence in newly developed palladium-catalyzed cycloadditions of allenes. An asymmetric pseudo-stereodivergent cycloaddition of allenes bearing a primary leaving group at the α-position, where a dynamic kinetic asymmetric hydroalkoxylation of racemic unactivated allenes was the enantio-determining step, is realized, providing four stereoisomers [(Z,R), (Z,S), (E,S), and (E,R)] containing a di-substituted alkene scaffold and a stereogenic center. By tuning reaction conditions, a mechanistically distinctive cycloaddition is uncovered selectively with the same set of substrates. By switching the position of the leaving group of allenes, a cycloaddition involving an intermolecular O-attack is disclosed. Diverse mechanisms of the cycloaddition reactions of allenes enable rapid access to structurally and stereochemically diverse 3,4-dihydro-2H-1,4-benzoxazines in high efficiency and selectivity.

8.
Heliyon ; 10(12): e32998, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988566

RESUMO

The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.

9.
Cancer Lett ; : 217113, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009068

RESUMO

Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50% of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.

10.
Adv Mater ; : e2313547, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011781

RESUMO

The straightforward synthesis of noble-metal-nanoparticle-decorated ordered mesoporous transition metal oxides remains a great challenge due to the difficulty of balancing the interactions between precursors and templates. Herein, a solvent-pair-enabled multicomponent coassembly (SPEMC) strategy is developed for straightforward synthesis of noble-metal-nanoparticle-decorated nitrogen-doped ordered mesoporous tungsten oxide (abbreviated as NM/N-mWO3, NM = Pt, Rh, Pd). The amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS) copolymers coassemble with ammonium metatungstate (AMT) clusters and different kinds of hydrophilic noble metal precursors without phase separation. SPEMC synthesis requires no direct interaction between PEO-b-PS and AMT, thus the assembly equilibriums between noble metal precursors and PEO-b-PS can be readily controlled. The obtained NM/N-mWO3 nanocomposites possess ordered mesopores, abundant oxygen vacancies, and metal-metal oxide interfaces. As a result, the Pt/N-mWO3 sensors exhibit superior ammonia sensing performances with high sensitivity, an ultralow limit of detection (51.2 ppb), good selectivity, and long-term stability. Spectroscopic analysis reveals that ammonia is oxidized stepwise to NO, NO2 -, and NO3 - during the sensing process. Moreover, a portable wireless module based on Pt/N-mWO3 sensor can recognize ppm-level concentration of ammonia, which lays a solid foundation for its application in various fields.

11.
J Orthop Surg Res ; 19(1): 410, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014468

RESUMO

BACKGROUND: The minimally invasive approach for the treatment of displaced scapular neck or body fractures has the advantages of less trauma and minimal muscle dissection. In clinical practice, the minimally invasive approach combined with an anatomical locking plate has been used to treat scapular body fractures. In addition, we have made minor modifications to the minimally invasive approach. However, the biomechanical study about the approach combined with an anatomical locking plate in treating scapular body fractures was limited. METHODS: Finite element analysis (FEA) was used to conduct the biomechanical comparison between the anatomical locking plate (AP model) and reconstructive plate (RP model) in the treatment of scapular body fractures through the modified minimally invasive approach. A healthy male volunteer with no history of scapula or systemic diseases was recruited. High-resolution computed tomography images of his right scapula were obtained. Two scapula models were constructed and analyzed by the software of Mimics 21.0, Geomagic Wrap 2021, SolidWorks 2021, and ANSYS Workbench 2022, respectively. RESULTS: Through static structural analysis, in terms of equivalent von Mises stress, equivalent elastic strain, and total deformation, the AP model exhibited superior safety characteristics, enhanced flexibility, and anticipated stability compared with the RP model. This was evidenced by lower maximum stress, lower maximum strain and displacement. CONCLUSION: The minimally invasive approach combined with an anatomical locking plate for scapular body fractures had better biomechanical stability. The study provided a biomechanical basis to guide the clinical treatment of scapular body fractures.


Assuntos
Placas Ósseas , Análise de Elementos Finitos , Fixação Interna de Fraturas , Fraturas Ósseas , Procedimentos Cirúrgicos Minimamente Invasivos , Escápula , Humanos , Escápula/lesões , Escápula/cirurgia , Escápula/diagnóstico por imagem , Masculino , Fraturas Ósseas/cirurgia , Fraturas Ósseas/diagnóstico por imagem , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Fenômenos Biomecânicos , Adulto , Tomografia Computadorizada por Raios X
12.
Ultrason Sonochem ; 107: 106933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865900

RESUMO

Extraction of anthocyanins from Lycium ruthenicum Murr. (L. ruthenicum) is a notable challenge in food production, requiring methods that balance efficiency and safety. In this study, we conducted a comparative analysis the extraction of anthocyanins by natural air drying (NAD), vacuum freeze drying (VFD), hot air drying (HAD), and vacuum microwave drying (MVD) combined with ultrasonic-assisted enzymolysis extraction (UAEE). The results demonstrated that the extraction yield and antioxidant activity of anthocyanins were significantly higher in VFD. This phenomenon can be attributed to the modification of raw material's microstructure, leading to an increased extraction yield of specific anthocyanins such as Cyanidin-3-galactoside, Delphinidin chloride, Cyanidin, and Petunidin. According to the pretreatment results, the extraction process of anthocyanins was further optimized. The highest yield (3.16 g/100 g) was obtained in following conditions: 0.24 % pectinase, 48 °C, solid:liquid = 1:21, and 21 min ultrasonic time. This study improves the commercial value and potential application of L. ruthenicum in food industry.


Assuntos
Antocianinas , Dessecação , Lycium , Antocianinas/isolamento & purificação , Antocianinas/química , Lycium/química , Dessecação/métodos , Ondas Ultrassônicas , Fracionamento Químico/métodos , Antioxidantes/isolamento & purificação , Antioxidantes/química , Poligalacturonase , Micro-Ondas
13.
ACS Nano ; 18(26): 17162-17174, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38902594

RESUMO

Although in vitro neuronal network models hold great potential for advancing neuroscience research, with the capacity to provide fundamental insights into mechanisms underlying neuronal functions, the dynamics of cell communication within such networks remain poorly understood. Here, we develop a customizable, polymer modified three-dimensional gold microelectrode array with sufficient stability for high signal-to-noise, long-term, neuronal recording of cultured networks. By using directed spatial and temporal patterns of electrical stimulation of cells to explore synaptic-based communication, we monitored cell network dynamics over 3 weeks, quantifying communication capability using correlation heatmaps and mutual information networks. Analysis of synaptic delay and signal speed between cells enabled us to establish a communication connectivity model. We anticipate that our discoveries of the dynamic changes in communication across the neuronal network will provide a valuable tool for future studies in understanding health and disease as well as in developing effective platforms for evaluating therapies.


Assuntos
Ouro , Microeletrodos , Rede Nervosa , Neurônios , Ouro/química , Animais , Neurônios/fisiologia , Rede Nervosa/fisiologia , Comunicação Celular , Ratos , Células Cultivadas
14.
J Colloid Interface Sci ; 674: 345-352, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38941928

RESUMO

Aqueous zinc batteries (AZBs) with the advantages of safety, low cost, and sustainability are promising candidates for large-scale energy storage devices. However, the issues of interface side reactions and dendrite growth at the zinc metal anode (ZMA) significantly harm the cycling lifespan of AZBs. In this study, we designed a nano-molecular sieve additive, fullerenol (C60(OH)n), which possesses a surface rich in hydroxyl groups that can be uniformly dispersed in the aqueous solution, and captures free water in the electrolyte, thereby suppressing the occurrence of interfacial corrosion. Besides, fullerenol can be further reduced to fullerene (C60) on the surface of ZMA, holding a unique self-smoothing effect that can inhibit the growth of dendritic Zn. With the synergistic action of these two effects, the fullerenol-contained electrolyte (FE) enables dendrite-free ZMAs. The Zn-Ti half-cell using FE exhibits stable cycling over 2500 times at 5 mA cm-2 with an average Coulombic efficiency as high as 99.8 %. Additionally, the Zn-NaV3O8 cell using this electrolyte displays a capacity retention rate of 100 % after 1000 cycles at -20 °C. This work provides important insights into the molecular design of multifunctional electrolyte additives.

15.
Nat Commun ; 15(1): 5292, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906855

RESUMO

Ewing sarcoma is a pediatric bone and soft tissue tumor treated with chemotherapy, radiation, and surgery. Despite intensive multimodality therapy, ~50% patients eventually relapse and die of the disease due to chemoresistance. Here, using phospho-profiling, we find Ewing sarcoma cells treated with chemotherapeutic agents activate TAM (TYRO3, AXL, MERTK) kinases to augment Akt and ERK signaling facilitating chemoresistance. Mechanistically, chemotherapy-induced JAK1-SQ phosphorylation releases JAK1 pseudokinase domain inhibition allowing for JAK1 activation. This alternative JAK1 activation mechanism leads to STAT6 nuclear translocation triggering transcription and secretion of the TAM kinase ligand GAS6 with autocrine/paracrine consequences. Importantly, pharmacological inhibition of either JAK1 by filgotinib or TAM kinases by UNC2025 sensitizes Ewing sarcoma to chemotherapy in vitro and in vivo. Excitingly, the TAM kinase inhibitor MRX-2843 currently in human clinical trials to treat AML and advanced solid tumors, enhances chemotherapy efficacy to further suppress Ewing sarcoma tumor growth in vivo. Our findings reveal an Ewing sarcoma chemoresistance mechanism with an immediate translational value.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Janus Quinase 1 , Receptores Proteína Tirosina Quinases , Sarcoma de Ewing , Transdução de Sinais , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Sarcoma de Ewing/genética , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/genética , Linhagem Celular Tumoral , Animais , Transdução de Sinais/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Camundongos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fosforilação/efeitos dos fármacos , Feminino , Fator de Transcrição STAT6
16.
J Med Virol ; 96(6): e29719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873911

RESUMO

This study aimed to determine the timing patterns of the initial respiratory syncytial virus (RSV) infection and to identify the factors influencing disease severity in infants of varying health status. A retrospective study was conducted at the Affiliated Children's Hospital of Chongqing Medical University from 2012 to 2022. The timing of the first RSV infection was estimated in infants with differing health status using correlation analysis, considering their birth time. Logistic regression was utilized to identify factors influencing severe RSV infection in these infants. RSV detection primarily occurred in the winter and spring. Epidemic season and peak timing of RSV were not significantly affected by health status or the COVID-19 pandemic. A strong positive correlation was observed between the age at RSV infection and the interval from birth to the RSV peak season. Infants born during the RSV epidemic season exhibited a higher likelihood of infection within the first 2 months postbirth. In contrast, those born outside the RSV epidemic season were more susceptible to infection during the subsequent peak. Notably, infants with pre-existing health conditions contracted RSV at an earlier age compared to their healthy counterparts. Among healthy infants, severe RSV infection was associated with sex, age, and timing of infection. For infants with underlying conditions, severe RSV infection was primarily related to age and timing of infection. The initial timing of RSV infection in infants varied depending on their health status. Young age and infection timing during the RSV epidemic season were significant risk factors for severe RSV infection. These findings provide a theoretical basis for optimizing immunization strategies for infants with diverse health conditions.


Assuntos
Infecções por Vírus Respiratório Sincicial , Estações do Ano , Índice de Gravidade de Doença , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Lactente , Masculino , Feminino , Estudos Retrospectivos , Recém-Nascido , Vírus Sincicial Respiratório Humano , Hospitalização/estatística & dados numéricos , Fatores de Risco , COVID-19/epidemiologia , Nível de Saúde , China/epidemiologia , Fatores de Tempo
17.
Opt Express ; 32(10): 16722-16731, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858871

RESUMO

This work reports the nonlinear dynamics of a mid-infrared interband cascade laser (ICL) subject to optical injection. It is shown that the stable locking regime is asymmetric and broadens with increasing injection strength. Outside the locking regime, the ICL mostly produces period-one oscillations. However, three categories of periodic pulse oscillations are observed in the vicinity of the Hopf bifurcation and the saddle-node bifurcation. In particular, it is found that the ICL generates broadband chaos at a near-threshold pump current, and the chaos bandwidth is over 300 MHz.

18.
Opt Express ; 32(10): 17988-18006, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858966

RESUMO

The mode decomposition based on matrix operation (MDMO) is one of the fastest mode decomposition (MD) techniques, which is important to the few-mode fiber laser characterization and its applications. In this paper, the general error of the MDMO technique was analyzed, where different influencing factors, such as position deviation of the optical imaging system, coordinate deviation of the image acquisition system, aberrations, and mode distortion were considered. It is found that the MDMO technique based on far-field intensity distribution is less affected by optical imaging system position deviation, coordinate deviation of the image acquisition system, and mode distortion than those based on direct near-field decomposition. But far-field decomposition is more affected by aberration than those based on near-field decomposition. In particular, the numerical results show that the deviation of the coordinate axis direction is an important factor limiting the accuracy of MD. In addition, replacing the ideal eigenmode basis with a distorted eigenmode basis can effectively suppress the decrease in mode decomposition accuracy caused by fiber bending. Moreover, based on detailed numerical analysis results, fitting formulas for estimating the accuracy of the MDMO technique with imperfections are also provided, which provides a comprehensive method for evaluating the accuracy of the MDMO technique in practical engineering operations.

19.
Opt Express ; 32(9): 16478-16490, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859273

RESUMO

In this work, we quantitatively investigate the SBS threshold in high-power narrow-linewidth fiber amplifiers seeded with phase-modulated single-frequency lasers in presence of weak end feedback. The impacts of the end feedback and spectral linewidths on the SBS threshold are demonstrated in detail through comparative experiments and numerical simulations, respectively. In the experiment, we have pointed out a practical method to estimate the end reflectivity in high-power fiber amplifiers. Based on this estimation, the SBS threshold characters of the high-power narrow-linewidth fiber amplifiers with different end reflectivity and seed linewidths are investigated. By reducing the end reflectivity, a 2.85 times SBS threshold enhancement has been achieved at the most susceptible linewidth (16.8 GHz). Furthermore, we propose a spectral evolution model to investigate the SBS threshold in high-power narrow-linewidth fiber amplifiers, which is even capable for calculating SBS thresholds of the systems with tens of GHz linewidth while weak end reflection is considered. The simulation results demonstrate that end reflection will obviously affect the SBS threshold when the linewidth of the seed laser is broadened beyond 5 GHz, especially for the spectral linewidth of seed lasers nearing the Brillouin frequency shift. Besides, when the end reflectivity is set to be stronger than -65 dB, the SBS threshold performs a tendency to decline and then rise with the growth of seed linewidth. The experiment and simulation results provide a new optimization sight for the SBS effect suppression in high-power narrow-linewidth fiber amplifiers.

20.
Am J Cancer Res ; 14(5): 2626-2642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859854

RESUMO

Immunotherapy, in the shape of immune checkpoint inhibitors (ICIs), has completely changed the treatment of cancer. However, the increasing expense of treatment and the frequency of immune-related side effects, which are frequently associated with combination antibody therapies and Fc fragment of antibody, have limited the patient's ability to benefit from these treatments. Herein, we presented the therapeutic effects of the plasmid-encoded PD-1 and CTLA-4 scFvs (single-chain variable fragment) for melanoma via an optimized intramuscular gene delivery system. After a single injection, the plasmid-encoded ICI scFv in mouse sera continued to be above 150 ng/mL for 3 weeks and reached peak amounts of 600 ng/mL. Intramuscular delivery of plasmid encoding PD-1 and CTLA-4 scFvs significantly changed the tumor microenvironment, delayed tumor growth, and prolonged survival in melanoma-bearing mice. Furthermore, no significant toxicity was observed, suggesting that this approach could improve the biosafety of ICIs combination therapy. Overall, the expression of ICI scFvs in vivo using intramuscular plasmid delivery could potentially develop into a reliable, affordable, and safe immunotherapy technique, expanding the range of antibody-based gene therapy systems that are available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...