Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(6): 1703-1712, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36799214

RESUMO

Acute leukemia (AL) is one of the top life-threatening diseases. Accurate typing of AL can significantly improve its prognosis. However, conventional methods for AL typing often require cell staining, which is time-consuming and labor-intensive. Furthermore, their performance is highly limited by the specificity and availability of fluorescent labels, which can hardly meet the requirements of AL typing in clinical settings. Here, we demonstrate AL typing by intelligent optical time-stretch (OTS) imaging flow cytometry on a microfluidic chip. Specifically, we employ OTS microscopy to capture the images of cells in clinical bone marrow samples with a spatial resolution of 780 nm at a high flowing speed of 1 m s-1 in a label-free manner. Then, to show the clinical utility of our method for which the features of clinical samples are diverse, we design and construct a deep convolutional neural network (CNN) to analyze the cellular images and determine the AL type of each sample. We measure 30 clinical samples composed of 7 acute lymphoblastic leukemia (ALL) samples, 17 acute myelogenous leukemia (AML) samples, and 6 samples from healthy donors, resulting in a total of 227 620 images acquired. Results show that our method can distinguish ALL and AML with an accuracy of 95.03%, which, to the best of our knowledge, is a record in label-free AL typing. In addition to AL typing, we believe that the high throughput, high accuracy, and label-free operation of our method make it a potential solution for cell analysis in scientific research and clinical settings.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Citometria de Fluxo/métodos , Microfluídica , Dispositivos Lab-On-A-Chip
2.
Lab Chip ; 23(6): 1561-1575, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36648503

RESUMO

Circulating tumor cells (CTCs) are precursors to cancer metastasis. In blood circulation, they take various forms such as single CTCs, CTC clusters, and CTC-leukocyte clusters, all of which have unique characteristics in terms of physiological function and have been a subject of extensive research in the last several years. Unfortunately, conventional methods are limited in accurately analysing the highly heterogeneous nature of CTCs. Here we present an effective strategy for simultaneously analysing all forms of CTCs in blood by virtual-freezing fluorescence imaging (VIFFI) flow cytometry with 5-aminolevulinic acid (5-ALA) stimulation and antibody labeling. VIFFI is an optomechanical imaging method that virtually freezes the motion of fast-flowing cells on an image sensor to enable high-throughput yet sensitive imaging of every single event. 5-ALA stimulates cancer cells to induce the accumulation of protoporphyrin (PpIX), a red fluorescent substance, making it possible to detect all cancer cells even if they show no expression of the epithelial cell adhesion molecule, a typical CTC biomarker. Although PpIX signals are generally weak, VIFFI flow cytometry can detect them by virtue of its high sensitivity. As a proof-of-principle demonstration of the strategy, we applied cancer cells spiked in blood to the strategy to demonstrate image-based detection and accurate classification of single cancer cells, clusters of cancer cells, and clusters of a cancer cell(s) and a leukocyte(s). To show the clinical utility of our method, we used it to evaluate blood samples of four breast cancer patients and four healthy donors and identified EpCAM-positive PpIX-positive cells in one of the patient samples. Our work paves the way toward the determination of cancer prognosis, the guidance and monitoring of treatment, and the design of antitumor strategies for cancer patients.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Feminino , Células Neoplásicas Circulantes/patologia , Citometria de Fluxo , Ácido Aminolevulínico/farmacologia , Congelamento , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Neoplasias da Mama/patologia , Anticorpos , Imagem Óptica , Biomarcadores Tumorais/metabolismo
3.
Lab Chip ; 23(3): 410-420, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511820

RESUMO

Vascular stenosis caused by atherosclerosis instigates activation and aggregation of platelets, eventually resulting in thrombus formation. Although antiplatelet drugs are commonly used to inhibit platelet activation and aggregation, they unfortunately cannot prevent recurrent thrombotic events in patients with atherosclerosis. This is partially due to the limited understanding of the efficacy of antiplatelet drugs in the complex hemodynamic environment of vascular stenosis. Conventional methods for evaluating the efficacy of antiplatelet drugs under stenosis either fail to simulate the hemodynamic environment of vascular stenosis characterized by high shear stress and recirculatory flow or lack spatial resolution in their analytical techniques to statistically identify and characterize platelet aggregates. Here we propose and experimentally demonstrate a method comprising an in vitro 3D stenosis microfluidic chip and an optical time-stretch quantitative phase imaging system for studying the efficacy of antiplatelet drugs under stenosis. Our method simulates the atherogenic flow environment of vascular stenosis while enabling high-resolution and statistical analysis of platelet aggregates. Using our method, we distinguished the efficacy of three antiplatelet drugs, acetylsalicylic acid (ASA), cangrelor, and eptifibatide, for inhibiting platelet aggregation induced by stenosis. Specifically, ASA failed to inhibit stenosis-induced platelet aggregation, while eptifibatide and cangrelor showed high and moderate efficacy, respectively. Furthermore, we demonstrated that the drugs tested also differed in their efficacy for inhibiting platelet aggregation synergistically induced by stenosis and agonists (e.g., adenosine diphosphate, and collagen). Taken together, our method is an effective tool for investigating the efficacy of antiplatelet drugs under vascular stenosis, which could assist the development of optimal pharmacologic strategies for patients with atherosclerosis.


Assuntos
Aterosclerose , Trombose , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Eptifibatida/farmacologia , Constrição Patológica , Plaquetas , Aspirina/farmacologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Dispositivos Lab-On-A-Chip
4.
Int J Appl Earth Obs Geoinf ; 112: 102942, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35945962

RESUMO

From an epidemiological perspective, previous research on COVID-19 has generally been based on classical statistical analyses. As a result, spatial information is often not used effectively. This paper uses image-based neural networks to explore the relationship between urban spatial risk and the distribution of infected populations, and the design of urban facilities. To achieve this objective, we use spatio-temporal data of people infected with new coronary pneumonia prior to 28 February 2020 in Wuhan. We then use kriging, which is a method of spatial interpolation, as well as core density estimation technology to establish the epidemic heat distribution on fine grid units. We further evaluate the influence of nine major spatial risk factors, including the distribution of agencies, hospitals, park squares, sports fields, banks and hotels, by testing them for significant positive correlation with the distribution of the epidemic. The weights of these spatial risk factors are used for training Generative Adversarial Network (GAN) models, which predict the distribution of cases in a given area. The input image for the machine learning model is a city plan converted by public infrastructures, and the output image is a map of urban spatial risk factors in the given area. The results of the trained model demonstrate that optimising the relevant point of interests (POI) in urban areas to effectively control potential risk factors can aid in managing the epidemic and preventing it from dispersing further.

5.
Nat Commun ; 12(1): 7135, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887400

RESUMO

A characteristic clinical feature of COVID-19 is the frequent incidence of microvascular thrombosis. In fact, COVID-19 autopsy reports have shown widespread thrombotic microangiopathy characterized by extensive diffuse microthrombi within peripheral capillaries and arterioles in lungs, hearts, and other organs, resulting in multiorgan failure. However, the underlying process of COVID-19-associated microvascular thrombosis remains elusive due to the lack of tools to statistically examine platelet aggregation (i.e., the initiation of microthrombus formation) in detail. Here we report the landscape of circulating platelet aggregates in COVID-19 obtained by massive single-cell image-based profiling and temporal monitoring of the blood of COVID-19 patients (n = 110). Surprisingly, our analysis of the big image data shows the anomalous presence of excessive platelet aggregates in nearly 90% of all COVID-19 patients. Furthermore, results indicate strong links between the concentration of platelet aggregates and the severity, mortality, respiratory condition, and vascular endothelial dysfunction level of COVID-19 patients.


Assuntos
COVID-19/diagnóstico , Agregação Plaquetária , Análise de Célula Única , Trombose/virologia , COVID-19/sangue , Feminino , Humanos , Masculino , Microscopia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...