Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 5826-5836, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439299

RESUMO

Mid-infrared (MIR) dual-comb spectroscopy (DCS) is a highly effective method for molecular metrology of rovibrational transition spectra in a quick accurate manner. However, due to limited comb frequency instability, manipulating coherence between two frequency combs to accomplish high-quality spectral analysis in the MIR region is a huge challenge. Here, we developed a comb-teeth resolved MIR DCS based on active phase control cooperating with a CWs-dependent (CWD) interferogram timing correction. Firstly, four meticulously engineered actuators were individually integrated into two near-infrared (NIR) seed combs to facilitate active coherence maintenance. Subsequently, two PPLN waveguides were adopted to achieve parallel difference frequency generations (DFG), directly achieving a coherent MIR dual-comb spectrometer. To improve coherence and signal-to-noise ratio (SNR), a CWD resampled interferogram timing correction was used to optimize the merit of DCS from 7.5 × 105 to 2.5 × 106. Meanwhile, we carried out the measurement of MIR DCS on the methane hot-band absorption spectra (v3 band), which exhibited a good agreement with HITRAN by a standard deviation on recording residual of 0.76%. These experimental results confirm that this MIR DCS with CWD interferogram timing correction has significant potential to characterize the rovibrational transitions of MIR molecules.

2.
Opt Lett ; 48(17): 4673-4676, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656583

RESUMO

This Letter presents a 0.4-5.2-µm frequency comb from a compact laser. We designed an integrated fiber device for a figure-9 laser and constructed an all-fiber laser system. The spectrum of the fiber laser was scaled to the broadband region using a chirped periodically poled lithium niobate waveguide. To use this system for gas sensing, a mid-infrared comb with a spectral range of 2.5-5.2 µm and average power of 2.1 mW was divided using an optical filter. The optical part was packaged in a 305 mm × 225 mm × 62 mm box. The comb was stabilized by locking the repetition rate and carrier-envelope offset frequency of the seed source. The system provided an ultrabroadband spectral range from 0.4 to 5.2 µm, which could be applied to spectroscopy, frequency metrology, and optical synthesizers.

3.
Opt Express ; 31(1): 514-527, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606988

RESUMO

We demonstrate three typical mode-locking processes of a nonlinear amplifying loop mirror (NALM) fiber laser via a general nonlinear Schrödinger equation-based (GNLSE) simulation model. First, the pulse evolutions in the NALM cavity were separately simulated under asymmetric and weakly asymmetric conditions. We found that the splitting ratio and positions of the gain fiber can result in a suitable phase bias between clockwise and counter-clockwise beams, enabling the realization of a self-starting low-threshold operating condition. To assess the roles of the splitting ratio and gain in the mode-locking process, we simulated three pulse formation processes: in the soliton, stretched-pulse, and dissipative soliton mode-locking regimes. The simulation results show that the splitting ratio, gain, and dispersion directly influence the mode-locking condition and pulse characteristics, thereby providing effective quantified guidance for high-quality pulse generation. Finally, an experimental NALM oscillation operating under stretched pulse conditions was established to investigate the impact of the splitting ratio and pump power on the pulse characteristics. The experimental results prove that the splitting ratio, gain, and dispersion can be used to manipulate the mode-locking threshold, self-starting threshold, nonlinear effects, and pulse characteristics.

4.
Sensors (Basel) ; 21(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063563

RESUMO

In this paper, we report a scheme providing precise spectral analysis and surface imaging, simultaneously, based on a high-coherence dual-comb interferometer. With two tightly phase-locking frequency combs, we demonstrate a high-coherence dual-comb interferometer (DCI) covering 188 to 195 THz (1538.5 to 1595.7 nm) with comb-tooth resolution and a max spectral signal-to-noise ratio (SNR) of 159.7. The combination of the high-coherence dual-comb spectrometer and a reference arm simultaneously enables gas absorption spectroscopy and for the absolute distance information to be obtained in one measurement. As a demonstration, we measure the spectrum of CO2 and CO. From the same interferograms, we demonstrate that distance measurement, by time-of-flight (TOF), can be resolved with an rms precision of 0.53 µm after averaging 140 images and a measurement time of 1 s. Finally, we demonstrate that non-contact surface imaging, using 2D mechanical scanning, reaches lateral resolution of 40 µm. The longitudinal precision is 0.68 µm with a measurement time of 0.5 s. It verifies that DCS has the potential to be applied in standoff detection, environmental pollution monitors, and remote sensing.

5.
Opt Lett ; 45(23): 6458-6461, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258836

RESUMO

In this Letter, we report an octave-spanning mid-infrared (MIR) comb generation with a difference frequency generation (DFG) approach optimized for aperiodically poled Mg:LiNbO3 and nonlinear spectral broadening. An Er:fiber comb is delivered to two branches and amplified in an Yb:fiber and an Er:fiber amplifier, respectively. We demonstrate that the two-branch DFG can yield the spectrum tuned over an octave in a fan-out periodically poled lithium niobate. Thus, we obtain an optimized poling period profile and design the aperiodically poled Mg:LiNbO3. The results demonstrate that broadband combs can be generated in the MIR atmospheric window.

6.
Opt Express ; 28(4): 4817-4824, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121713

RESUMO

We report on a high-power fiber optical frequency comb consisting of a 250-MHz mode-locked fiber laser and a three-stage cascaded fiber chirped-pulse amplification system. After power scaling, the group velocity dispersion and third-order dispersion, generated in fiber stretcher and amplifiers, are compensated by a grism compressor, outputting a 132-W, 180-fs pulse train. The repetition rate and carrier-envelope offset frequency are locked to a Rb clock with the standard deviations of 1.07 and 0.87 mHz, corresponding to the fractional instability of 8.3×10-13 and 1.35×10-19, respectively. Moreover, we investigate the noise characteristics at high average powers, presenting a low-noise property of this high-power fiber OFC.

7.
Opt Lett ; 43(7): 1606-1609, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601041

RESUMO

Herein, the method of spectrum-encoded dual-comb interferometry is introduced to measure a three-dimensional (3-D) profile with absolute distance information. By combining spectral encoding for wavelength-to-space mapping, dual-comb interferometry for decoding and optical reference for calibration, this system can obtain a 3-D profile of an object at a stand-off distance of 114 mm with a depth precision of 12 µm. With the help of the reference arm, the absolute distance, reflectivity distribution, and depth information are simultaneously measured at a 5 kHz line-scan rate with free-running carrier-envelope offset frequencies. To verify the concept, experiments are conducted with multiple objects, including a resolution test chart, a three-stair structure, and a designed "ECNU" letter chain. The results show a horizontal resolution of ∼22 µm and a measurement range of 1.93 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...