Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 401: 130713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641305

RESUMO

The mainstream anaerobic ammonium oxidation (anammox) faces considerable challenges with low-strength municipal wastewater. A Fe(Ⅱ)-amended partial denitrification coupled anammox (PD/A) process was conducted and achieved a long-term and efficient nitrogen and phosphorus removal, yielding effluent total nitrogen and phosphorus concentrations of 1.97 ± 1.03 mg/L and 0.23 ± 0.13 mg/L, respectively, which could well meet more stringent effluent discharge standard of some wastewater treatment plants in specific geographical locations, e.g., estuaries. Fe(Ⅱ)-driven vivianite formation provided key nucleuses for the optimization of the spatial distribution of heterotrophic and anammox bacteria with enhanced extracellular polymeric substances as key driving forces. Metagenomics analysis further revealed the increase of key genes, enhancing anammox bacteria homeostasis, which also bolstered the resistance to environmental perturbations. This study provided a comprehensive sight into the function of Fe(Ⅱ) in mainstream PD/A process, and explored a promising alternative for synergetic nitrogen and phosphorus removal for low-strength municipal wastewater treatment.


Assuntos
Nitrogênio , Fósforo , Águas Residuárias , Fósforo/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Bactérias/metabolismo , Bactérias/genética , Purificação da Água/métodos , Oxirredução , Desnitrificação , Reatores Biológicos/microbiologia , Processos Heterotróficos , Compostos Ferrosos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Anaerobiose
2.
Bioresour Technol ; 387: 129571, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37506935

RESUMO

The high levels of free ammonia (FA) challenge the application of partial nitritation (PN) and denitrification (DN) in the treatment of ammonia-rich wastewater. This study explored the impact of high levels of FA on the PN and DN stability and microbial community dynamics. By reducing reflux and increasing influent load, the concentrations of FA in PN and DN reactors increased from 28.9 mg/L and 140.0 mg/L to 1099.8 mg/L and 868.4 mg/L, respectively. During this process, the performance of PN and DN remained stable. The microbial analysis revealed that the Nitrosomonas exhibited strong tolerance to high levels of FA, and its relative abundance was positively correlated with amoABC (R2 0.984) and hao (R2 0.999) genes. The increase in microbial diversity could enhance the resistance ability of PN against the FA impact. In contrast, high levels of FA had scant influence on the microbial community and performance of DN.


Assuntos
Microbiota , Poluentes Químicos da Água , Amônia , Desnitrificação , Reatores Biológicos , Nitrogênio
3.
Bioresour Technol ; 381: 129118, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37141999

RESUMO

This study established a stable and efficient pilot-scale denitrification (DN) and partial nitritation (PN) combined with autotrophic nitrogen removal process for mature landfill leachate treatment. A total inorganic nitrogen removal efficiency (TINRE) of 95.3% was achieved without any external carbon source input, including 17.1%, 1.0% and 77.2% of nitrogen removal contributed by the DN, PN and autotrophic processes, respectively. ANAMMOX genus, Ca_Anammoxoglobus (19.4%) was dominant in autotrophic reactor. Moreover, denitrifying bacteria could utilize in-situ organics, including poorly degradable organics, to enhance the nitrogen removal performance of autotrophic process, contributing 3.4% of TINRE. This study provides new insights for the economical, low-carbon, and efficient treatment of mature landfill leachate.


Assuntos
Desnitrificação , Poluentes Químicos da Água , Nitrogênio , Reatores Biológicos , Oxirredução , Esgotos
4.
J Environ Manage ; 326(Pt A): 116653, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410300

RESUMO

For the sake of exploring a new economical and low-carbon alternative for real nitrate-containing wastewater treatment, a new combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process was developed. The nitrogen removal performance of this process was investigated through long-term operation in a sequencing batch reactor (SBR) and two submerged anaerobic biological filters (SABF). Results showed that the average NO3--N to NO2-N transformation ratio improved to 82.6% with organic carbon source to NO3-N ratio of 1.8, and urea hydrolysis provided sufficient NH4+-N and inorganic carbon to anammox process for nitrogen removal. The influent NH4+-N/NO2--N ratio for subsequent anammox reactor could be adjacent to the optimal ratio of 1.32 during the whole operation. The combined process showed efficient nitrogen removal performance with 85% NO3--N removal, 93.8% total nitrogen removal and total nitrogen loading rate as 1.1 ± 0.5 kg N/(m3·d). High-throughput sequencing analysis results revealed that Genera Thauera, Hyphomicrobium and Candidatus Brocadia were the dominant species responsible for partial denitrification, urea hydrolysis and anammox, respectively. The proposed process was more economically and environmental-friendly than the traditional denitrification process with 51.7% operational cost reduction, 99.7% N2O and 60% CO2 emission decrement, facilitating the sustainable development of the nitrate-containing wastewater treatment industry in the future.


Assuntos
Nitratos , Purificação da Água , Carbono , Ureia , Desnitrificação , Hidrólise , Oxidação Anaeróbia da Amônia , Dióxido de Nitrogênio , Óxidos de Nitrogênio , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...