Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006157

RESUMO

Hypersonic vehicles encounter hostile service environments of thermal/mechanical/chemical coupling, so thermal protection materials are crucial and essential. Ceramizable composites have recently attracted intensive interest due to their ability to provide large-area thermal protection for hypersonic vehicles. In this work, a novel ceramizable composite of quartz fiber/benzoxazine resin modified with fused SiO2 and h-BN was fabricated using a prepreg compression molding technique. The effects of the fused SiO2 and h-BN contents on the thermal, mechanical, and ablative properties of the ceramizable composite were systematically investigated. The ceramizable composite with an optimized amount of fused SiO2 and h-BN exhibited superb thermal stability, with a peak degradation temperature and residue yield at 1400 °C of 533.2 °C and 71.5%, respectively. Moreover, the modified ceramizable composite exhibited excellent load-bearing capacity with a flexural strength of 402.2 MPa and superior ablation resistance with a linear ablation rate of 0.0147 mm/s at a heat flux of 4.2 MW/m2, which was significantly better than the pristine quartz fiber/benzoxazine resin composite. In addition, possible ablation mechanisms were revealed based on the microstructure analysis, phase transformation, chemical bonding states, and the degree of graphitization of the ceramized products. The readily oxidized pyrolytic carbon (PyC) and the SiO2 with a relatively low melting point were converted in situ into refractory carbide. Thus, a robust thermal protective barrier with SiC as the skeleton and borosilicate glass as the matrix protected the composite from severe thermochemical erosion and thermomechanical denudation.

2.
Polymers (Basel) ; 14(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890560

RESUMO

Carbon fiber fabric-reinforced phenolic resin composites are widely used as thermal protection materials for thermal protection systems in hypersonic vehicles and capsules. In this work, carbon fiber fabric-reinforced boron phenolic resin composites modified with MoSi2 and B4C were prepared via a compression molding technique. The high-temperature performance of the composites as well as the oxidation behavior of the carbon fibers was studied. The results indicate that the incorporation of B4C improves the performance of composites at high temperatures. The residual weight rate of composites with 15 phr B4C (BP-15) sufficiently increased from 23.03% to 32.91% compared with the composites without B4C (BP-0). After being treated at 1400 °C for 15 min, the flexural strength of BP-15 increased by 17.79% compared with BP-0. Compared with BP-0, the line ablation rate and mass ablation rate of BP-15 were reduced by 53.96% and 1.56%, respectively. In addition, MoSi2 and B4C particles had a positive effect on the oxidation of carbon fibers in the composites. After treatment at 1400 °C, the diameter of the as-received carbon fiber was reduced by 31.68%, while the diameter of the carbon fiber in BP-0 and BP-15 decreased by 15.12% and 6.14%, respectively. At high temperatures, the liquid B2O3 from B4C and MoSi2-derived complex-phase ceramics (MoB, MoB2, Mo2C, Mo4.8Si3C0.6) acted as an oxygen barrier, effectively mitigating the oxidation degree of the carbon fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...