Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(17): 3108-3122.e13, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37597513

RESUMO

General protein folding is mediated by chaperones that utilize ATP hydrolysis to regulate client binding and release. Zinc-finger protein 1 (Zpr1) is an essential ATP-independent chaperone dedicated to the biogenesis of eukaryotic translation elongation factor 1A (eEF1A), a highly abundant GTP-binding protein. How Zpr1-mediated folding is regulated to ensure rapid Zpr1 recycling remains an unanswered question. Here, we use yeast genetics and microscopy analysis, biochemical reconstitution, and structural modeling to reveal that folding of eEF1A by Zpr1 requires GTP hydrolysis. Furthermore, we identify the highly conserved altered inheritance of mitochondria 29 (Aim29) protein as a Zpr1 co-chaperone that recognizes eEF1A in the GTP-bound, pre-hydrolysis conformation. This interaction dampens Zpr1⋅eEF1A GTPase activity and facilitates client exit from the folding cycle. Our work reveals that a bespoke ATP-independent chaperone system has mechanistic similarity to ATPase chaperones but unexpectedly relies on client GTP hydrolysis to regulate the chaperone-client interaction.


Assuntos
Proteínas de Transporte , GTP Fosfo-Hidrolases , Chaperonas Moleculares , Fatores de Alongamento de Peptídeos , Proteínas de Saccharomyces cerevisiae , Humanos , Trifosfato de Adenosina , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato , Chaperonas Moleculares/genética , Fatores de Alongamento de Peptídeos/metabolismo , Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dobramento de Proteína
2.
Mol Cell ; 83(2): 252-265.e13, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36630955

RESUMO

The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.


Assuntos
Proteínas de Transporte , Chaperonas Moleculares , Proteínas de Transporte/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Zinco/metabolismo , Dedos de Zinco , Fator 1 de Elongação de Peptídeos/metabolismo
3.
Elife ; 112022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404228

RESUMO

Autophagy receptor (or adaptor) proteins facilitate lysosomal destruction of various organelles in response to cellular stress, including nutrient deprivation. To what extent membrane-resident autophagy receptors also respond to organelle-restricted cues to induce selective autophagy remains poorly understood. We find that latent activation of the yeast pexophagy receptor Atg36 by the casein kinase Hrr25 in rich media is repressed by the ATPase activity of Pex1/6, the catalytic subunits of the exportomer AAA+ transmembrane complex enabling protein import into peroxisomes. Quantitative proteomics of purified Pex3, an obligate Atg36 coreceptor, support a model in which the exportomer tail anchored to the peroxisome membrane represses Atg36 phosphorylation on Pex3 without assistance from additional membrane factors. Indeed, we reconstitute inhibition of Atg36 phosphorylation in vitro using soluble Pex1/6 and define an N-terminal unstructured region of Atg36 that enables regulation by binding to Pex1. Our findings uncover a mechanism by which a compartment-specific AAA+ complex mediating organelle biogenesis and protein quality control staves off induction of selective autophagy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Caseína Quinase I/metabolismo , Macroautofagia , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Biol Cell ; 32(17): 1557-1564, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34191542

RESUMO

Aneuploid yeast cells are in a chronic state of proteotoxicity, yet do not constitutively induce the cytosolic unfolded protein response, or heat shock response (HSR) by heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single-chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Last, we show that in euploids, Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Adaptação Biológica/genética , Aneuploidia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas/genética
5.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33877288

RESUMO

In mammals, tail-anchored (TA) proteins that are posttranslationally captured by the chaperone SGTA are triaged by the BAG6 complex into one of two fates: handoff to an ER targeting factor for membrane insertion or polyubiquitination for destruction by the proteasome. In this issue, Culver and Mariappan (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202004086) show that a fraction of newly synthesized TA proteins is polyubiquitinated in HEK293 cells independently of the BAG6 complex yet evades proteasomal degradation by undergoing deubiquitination en route to becoming stably inserted into the ER membrane.


Assuntos
Chaperonas Moleculares , Complexo de Endopeptidases do Proteassoma , Animais , Citosol/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Ubiquitinação
6.
Autophagy ; 16(5): 969-970, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150508

RESUMO

In budding yeast, macroautophagy/autophagy is required for cells to enter into the meiotic divisions. Our recent publication showed that autophagy is also required for meiotic exit. Inhibition of autophagy as cells enter into the meiotic divisions results in additional rounds of spindle formation, spindle elongation, and aberrant chromosome segregation leading to cell death. Under these conditions, the meiosis II-specific cyclin Clb3 is absent, and two substrates of the anaphase-promoting complex/cyclosome (APC/C) persist into the additional divisions instead of being degraded after meiosis II. We found that the translational repressor Rim4 is a substrate of autophagy, which could explain these observations through its known role in repressing synthesis of Clb3 and the meiosis-specific co-activator of the APC/C, Ama1. Combined, these results provide new mechanistic insight into the control of meiotic exit through timed autophagic degradation of a master regulator of gene expression.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclina B/genética , Meiose/fisiologia
7.
Dev Cell ; 52(2): 141-151.e5, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31991104

RESUMO

We explored the potential for autophagy to regulate budding yeast meiosis. Following pre-meiotic DNA replication, we blocked autophagy by chemical inhibition of Atg1 kinase or engineered degradation of Atg14 and observed homologous chromosome segregation followed by sister chromatid separation; cells then underwent additional rounds of spindle formation and disassembly without DNA re-replication, leading to aberrant chromosome segregation. Analysis of cell-cycle regulators revealed that autophagy inhibition prevents meiosis II-specific expression of Clb3 and leads to the aberrant persistence of Clb1 and Cdc5, two substrates of a meiotic ubiquitin ligase activated by Ama1. Lastly, we found that during meiosis II, autophagy degrades Rim4, an amyloid-like translational repressor whose timed clearance regulates protein production from its mRNA targets, which include CLB3 and AMA1. Strikingly, engineered Clb3 or Ama1 production restored meiotic termination in the absence of autophagy. Thus, autophagy destroys a master regulator of meiotic gene expression to enable irreversible meiotic exit.


Assuntos
Anáfase/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Meiose/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Humanos , Meiose/fisiologia , Desnaturação Proteica
8.
Elife ; 82019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674906

RESUMO

The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.


Assuntos
ATPases Transportadoras de Arsenito/antagonistas & inibidores , Benzamidas/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Ricina/toxicidade , Tiofenos/farmacologia , ATPases Transportadoras de Arsenito/genética , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico
9.
Nat Commun ; 10(1): 3262, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332180

RESUMO

TorsinA is an ER-resident AAA + ATPase, whose deletion of glutamate E303 results in the genetic neuromuscular disease primary dystonia. TorsinA is an unusual AAA + ATPase that needs an external activator. Also, it likely does not thread a peptide substrate through a narrow central channel, in contrast to its closest structural homologs. Here, we examined the oligomerization of TorsinA to get closer to a molecular understanding of its still enigmatic function. We observe TorsinA to form helical filaments, which we analyzed by cryo-electron microscopy using helical reconstruction. The 4.4 Å structure reveals long hollow tubes with a helical periodicity of 8.5 subunits per turn, and an inner channel of ~ 4 nm diameter. We further show that the protein is able to induce tubulation of membranes in vitro, an observation that may reflect an entirely new characteristic of AAA + ATPases. We discuss the implications of these observations for TorsinA function.


Assuntos
Adenosina Trifosfatases/química , Modelos Moleculares , Chaperonas Moleculares/química , Polímeros/química , Conformação Proteica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HeLa , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Polimerização , Polímeros/metabolismo
10.
PLoS Biol ; 17(4): e2007044, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30933966

RESUMO

The power of forward genetics in yeast is the foundation on which the field of autophagy research firmly stands. Complementary work on autophagy in higher eukaryotes has revealed both the deep conservation of this process, as well as novel mechanisms by which autophagy is regulated in the context of development, immunity, and neuronal homeostasis. The recent emergence of new clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based technologies has begun facilitating efforts to define novel autophagy factors and pathways by forward genetic screening in mammalian cells. Here, we set out to develop an expanded toolkit of autophagy reporters amenable to CRISPR/Cas9 screening. Genome-wide screening of our reporters in mammalian cells recovered virtually all known autophagy-related (ATG) factors as well as previously uncharacterized factors, including vacuolar protein sorting 37 homolog A (VPS37A), transmembrane protein 251 (TMEM251), amyotrophic lateral sclerosis 2 (ALS2), and TMEM41B. To validate this data set, we used quantitative microscopy and biochemical analyses to show that 1 novel hit, TMEM41B, is required for phagophore maturation. TMEM41B is an integral endoplasmic reticulum (ER) membrane protein distantly related to the established autophagy factor vacuole membrane protein 1 (VMP1), and our data show that these two factors play related, albeit not fully overlapping, roles in autophagosome biogenesis. In sum, our work uncovers new ATG factors, reveals a malleable network of autophagy receptor genetic interactions, and provides a valuable resource (http://crispr.deniclab.com) for further mining of novel autophagy mechanisms.


Assuntos
Autofagia/genética , Autofagia/fisiologia , Proteínas de Membrana/genética , Sistemas CRISPR-Cas , Retículo Endoplasmático/metabolismo , Humanos , Células K562 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Transporte Proteico
11.
Mol Cell ; 74(5): 891-908.e10, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006537

RESUMO

Cells respond to nutrient stress by trafficking cytosolic contents to lysosomes for degradation via macroautophagy. The endoplasmic reticulum (ER) serves as an initiation site for autophagosomes and is also remodeled in response to nutrient stress through ER-phagy, a form of selective autophagy. Quantitative proteome analysis during nutrient stress identified an unstudied single-pass transmembrane ER protein, TEX264, as an ER-phagy receptor. TEX264 uses an LC3-interacting region (LIR) to traffic into ATG8-positive puncta that often initiate from three-way ER tubule junctions and subsequently fuse with lysosomes. Interaction and proximity biotinylation proteomics identified a cohort of autophagy regulatory proteins and cargo adaptors located near TEX264 in an LIR-dependent manner. Global proteomics and ER-phagy flux analysis revealed the stabilization of a cohort of ER proteins in TEX264-/- cells during nutrient stress. This work reveals TEX264 as an unrecognized ER-phagy receptor that acts independently of other candidate ER-phagy receptors to remodel the ER during nutrient stress.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/metabolismo , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Estresse do Retículo Endoplasmático/genética , Células HCT116 , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Nutrientes/metabolismo , Transporte Proteico/genética , Proteoma/genética
13.
Dev Cell ; 44(1): 5-7, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316440

RESUMO

In a recent issue of Nature, Bohnert and Kenyon (2017) describe a signaling pathway that prevents transgenerational inheritance of cytoplasmic protein aggregates. Fertilizing sperm trigger aggregate clearance in the ovum by a microautophagy-like effector mechanism mediated by inter-organelle communication between lysosomes and mitochondria.


Assuntos
Fertilização , Óvulo , Masculino , Mitocôndrias , Transdução de Sinais , Espermatozoides
14.
Cell Rep ; 20(10): 2287-2293, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877464

RESUMO

The Get1/2 transmembrane complex drives the insertion of tail-anchored (TA) proteins from the cytosolic chaperone Get3 into the endoplasmic reticulum membrane. Mechanistic insight into how Get1/2 coordinates this process is confounded by a lack of understanding of the basic architecture of the complex. Here, we define the oligomeric state of full-length Get1/2 in reconstituted lipid bilayers by combining single-molecule and bulk fluorescence measurements with quantitative in vitro insertion analysis. We show that a single Get1/2 heterodimer is sufficient for insertion and demonstrate that the conserved cytosolic regions of Get1 and Get2 bind asymmetrically to opposing subunits of the Get3 homodimer. Altogether, our results define a simplified model for how Get1/2 and Get3 coordinate TA protein insertion.


Assuntos
Bicamadas Lipídicas/química , Animais , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Hidrólise , Proteínas de Membrana/metabolismo , Ligação Proteica , Multimerização Proteica
15.
Elife ; 62017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28906250

RESUMO

Msp1 is a conserved AAA ATPase in budding yeast localized to mitochondria where it prevents accumulation of mistargeted tail-anchored (TA) proteins, including the peroxisomal TA protein Pex15. Msp1 also resides on peroxisomes but it remains unknown how native TA proteins on mitochondria and peroxisomes evade Msp1 surveillance. We used live-cell quantitative cell microscopy tools and drug-inducible gene expression to dissect Msp1 function. We found that a small fraction of peroxisomal Pex15, exaggerated by overexpression, is turned over by Msp1. Kinetic measurements guided by theoretical modeling revealed that Pex15 molecules at mitochondria display age-independent Msp1 sensitivity. By contrast, Pex15 molecules at peroxisomes are rapidly converted from an initial Msp1-sensitive to an Msp1-resistant state. Lastly, we show that Pex15 interacts with the peroxisomal membrane protein Pex3, which shields Pex15 from Msp1-dependent turnover. In sum, our work argues that Msp1 selects its substrates on the basis of their solitary membrane existence.


Assuntos
Adenosina Trifosfatases/metabolismo , Membranas Intracelulares/enzimologia , Peroxissomos/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Microscopia Intravital , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Transporte Proteico
16.
Proc Natl Acad Sci U S A ; 114(7): E1158-E1167, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154131

RESUMO

Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.


Assuntos
Autofagia/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Mol Cell ; 63(1): 60-71, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27320198

RESUMO

Despite its eponymous association with the heat shock response, yeast heat shock factor 1 (Hsf1) is essential even at low temperatures. Here we show that engineered nuclear export of Hsf1 results in cytotoxicity associated with massive protein aggregation. Genome-wide analysis revealed that Hsf1 nuclear export immediately decreased basal transcription and mRNA expression of 18 genes, which predominately encode chaperones. Strikingly, rescuing basal expression of Hsp70 and Hsp90 chaperones enabled robust cell growth in the complete absence of Hsf1. With the exception of chaperone gene induction, the vast majority of the heat shock response was Hsf1 independent. By comparative analysis of mammalian cell lines, we found that only heat shock-induced but not basal expression of chaperones is dependent on the mammalian Hsf1 homolog (HSF1). Our work reveals that yeast chaperone gene expression is an essential housekeeping mechanism and provides a roadmap for defining the function of HSF1 as a driver of oncogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Homeostase , Camundongos da Linhagem 129 , Camundongos Endogâmicos CBA , Agregados Proteicos , Mapas de Interação de Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Fatores de Transcrição/genética , Transfecção
18.
Autophagy ; 11(11): 2132-2133, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26649944

RESUMO

Selective macroautophagy (hereafter autophagy) can eliminate large cytotoxic structures that are designated for degradation by autophagy receptors. In our recent paper, we showed that a key function of target-bound autophagy receptors is to activate the autophagy kinase, Atg1, via interactions with the scaffold protein Atg11. Our work thus reveals a mechanism by which target recognition coordinates the earliest steps in autophagosome biogenesis.

19.
Mol Biol Cell ; 26(21): 3681-3, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26515969

RESUMO

While trying to extract original and general advice from the details of my career, I realized this might not be possible. My path, like those of so many others, had too many idiosyncratic twists and turns that had to work out just the way they did to be mined for generally useful strategies. So I abandon the conceit of advice and simply give you my story. There are many like it, but this one is mine. Take what you wish from it.


Assuntos
Mobilidade Ocupacional , Acontecimentos que Mudam a Vida , Humanos , Conhecimento , Pesquisa/educação , Orientação Vocacional
20.
Mol Cell ; 59(3): 372-81, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166702

RESUMO

Selective autophagy eliminates protein aggregates, damaged organelles, and other targets that otherwise accumulate and cause disease. Autophagy receptors mediate selectivity by connecting targets to the autophagosome membrane. It has remained unknown whether receptors perform additional functions. Here, we show that in yeast certain receptor-bound targets activate Atg1, the kinase that controls autophagosome formation. Specifically, we found that in nutrient-rich conditions, Atg1 is active only in a multisubunit complex comprising constitutive protein aggregates, their autophagy receptor, and a scaffold protein, Atg11. Development of a cell-free assay for Atg1-mediated phosphorylation enabled us to activate Atg1 with purified receptor-bound aggregates and Atg11. Another target, damaged peroxisomes, also activated Atg1 using Atg11 with a distinct receptor. Our work reveals that receptor-target complexes activate Atg1 to drive formation of selective autophagosomes. This regulatory logic is a key similarity between selective autophagy and bulk autophagy, which is initiated by a distinct Atg1 activation mechanism during starvation.


Assuntos
Aminopeptidases/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia , Sistema Livre de Células , Ativação Enzimática , Técnicas In Vitro , Peroxissomos/metabolismo , Fosforilação , Agregados Proteicos , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...