Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6152, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034312

RESUMO

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.


Assuntos
Glutamato-Cisteína Ligase , Glutationa , Fígado , Fator 2 Relacionado a NF-E2 , Triglicerídeos , Animais , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fígado/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Camundongos , Triglicerídeos/metabolismo , Estresse Oxidativo , Masculino , Metabolismo dos Lipídeos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Oxirredução , Lipogênese/genética
2.
Proc Natl Acad Sci U S A ; 121(28): e2401579121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968123

RESUMO

Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.


Assuntos
Elementos de Resposta Antioxidante , Ferro , Humanos , Ferro/metabolismo , Corantes Fluorescentes/química , Fator 2 Relacionado a NF-E2/metabolismo , Ferritinas/metabolismo , Estresse Oxidativo , Oxirredução , Linhagem Celular Tumoral , Antioxidantes/metabolismo
3.
Redox Biol ; 75: 103211, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38908072

RESUMO

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

4.
JCI Insight ; 9(13)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815134

RESUMO

The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.


Assuntos
Glicina , Sulfonas , Ácido Úrico , Humanos , Ácido Úrico/metabolismo , Glicina/farmacologia , Glicina/análogos & derivados , Sulfonas/farmacologia , Meios de Cultura , Avaliação Pré-Clínica de Medicamentos/métodos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
5.
Nat Commun ; 15(1): 4244, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762605

RESUMO

Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisteína , Ferroptose , Glutationa , Neoplasias Pulmonares , Mitocôndrias , Humanos , Cisteína/metabolismo , Mitocôndrias/metabolismo , Glutationa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Ferro-Enxofre/metabolismo , Oxirredução , Camundongos
7.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659816

RESUMO

Overexpression of PHGDH, the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. While PHGDH amplification explains PHGDH overexpression in a subset of melanomas, we find that PHGDH levels are universally increased in melanoma cells due to oncogenic BRAFV600E promoting PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, PHGDH expression was critical for melanomagenesis as depletion of PHGDH in genetic mouse models blocked melanoma formation. Despite BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction, creating a potential vulnerability whereby melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction. Indeed, we show that this combination promoted cell death in vitro and attenuated melanoma growth in vivo. This study identified a melanoma cell-specific PHGDH-dependent vulnerability.

9.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873453

RESUMO

The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic for serine and therefore reliant on the uptake of exogenous serine. Importantly, however, the transporter(s) that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (coded for by the gene SLC1A5) as the primary serine transporter in cancer cells. ASCT2 is well-known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that ERα promotes serine uptake by directly activating SLC1A5 transcription. Together, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target in serine metabolism.

10.
Cancer ; 129(24): 3971-3977, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37560930

RESUMO

INTRODUCTION: Increasingly, early-stage non-small cell lung cancer (NSCLC) is treated with stereotactic body radiation therapy (SBRT). Although treatment is generally effective, a small subset of tumors will recur because of radioresistance. Preclinical studies suggested PI3K-AKT-mTOR activation mediates radioresistance. This study sought to validate this finding in tumor samples from patients who underwent SBRT for NSCLC. METHODS: Patients with T1-3N0 NSCLC treated with SBRT at our institution were included. Total RNA of formalin-fixed paraffin-embedded tumor biopsy specimens (pretherapy) was isolated and analyzed using the Clariom D assay. Risk scores from a PI3K activity signature and four published NSCLC signatures were generated and dichotomized by the median. Kaplan-Meier curves and Cox regressions were used to analyze their association with recurrence and overall survival (OS). The PI3K signature was also tested in a data set of resected NSCLC for additional validation. RESULTS: A total of 92 patients were included, with a median follow-up of 18.3 months for living patients. There was no association of any of the four published gene expression signatures with recurrence or OS. However, high PI3K risk score was associated with higher local recurrence (hazard ratio [HR], 11.72; 95% CI, 1.40-98.0; p = .023) and worse disease-free survival (DFS) (HR, 3.98; 95% CI, 1.57-10.09; p = .0035), but not OS (p = .49), regional recurrence (p = .15), or distant recurrence (p = .85). In the resected NSCLC data set (n = 361), high PI3K risk score was associated with decreased OS (log-rank p = .013) but not DFS (p = 0.54). CONCLUSIONS: This study validates that higher PI3K activity, measured by gene expression, is associated with local recurrence and worse DFS in early-stage NSCLC patients treated with SBRT. This may be useful in prognostication and/or tailoring treatment, and merits further validation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Estadiamento de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/patologia , Transcriptoma , Resultado do Tratamento
11.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546939

RESUMO

The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.

13.
Methods Mol Biol ; 2675: 51-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258755

RESUMO

The analysis of metabolic perturbation in biological samples is crucial to understand mechanisms of metabolic diseases. Here, we describe a protocol for quantitative stable isotope-labeled metabolite tracing of cysteine metabolism in cultured cells. This protocol relies on an extraction protocol to derivatize free thiols to prevent oxidation. In addition, the quantitative tracing of serine into multiple pathways, including the glutathione synthesis pathway, allows for the interrogation of cysteine and glutathione synthesis. This protocol provides a flexible framework that can be adapted to interrogate many metabolites and pathways of interest.


Assuntos
Cisteína , Compostos de Sulfidrila , Compostos de Sulfidrila/metabolismo , Isótopos de Carbono , Células Cultivadas , Marcação por Isótopo/métodos
14.
Nat Metab ; 5(4): 538-539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024755
15.
Cancer Res ; 83(12): 1953-1967, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062029

RESUMO

Mutations in the KEAP1-NRF2 (Kelch-like ECH-associated protein 1-nuclear factor-erythroid 2 p45-related factor 2) pathway occur in up to a third of non-small cell lung cancer (NSCLC) cases and often confer resistance to therapy and poor outcomes. Here, we developed murine alleles of the KEAP1 and NRF2 mutations found in human NSCLC and comprehensively interrogated their impact on tumor initiation and progression. Chronic NRF2 stabilization by Keap1 or Nrf2 mutation was not sufficient to induce tumorigenesis, even in the absence of tumor suppressors, p53 or LKB1. When combined with KrasG12D/+, constitutive NRF2 activation promoted lung tumor initiation and early progression of hyperplasia to low-grade tumors but impaired their progression to advanced-grade tumors, which was reversed by NRF2 deletion. Finally, NRF2 overexpression in KEAP1 mutant human NSCLC cell lines was detrimental to cell proliferation, viability, and anchorage-independent colony formation. Collectively, these results establish the context-dependence and activity threshold for NRF2 during the lung tumorigenic process. SIGNIFICANCE: Stabilization of the transcription factor NRF2 promotes oncogene-driven tumor initiation but blocks tumor progression, indicating distinct, threshold-dependent effects of the KEAP1/NRF2 pathway in different stages of lung tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Transdução de Sinais , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
16.
Cancer Res ; 83(9): 1426-1442, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862034

RESUMO

Cysteine plays critical roles in cellular biosynthesis, enzyme catalysis, and redox metabolism. The intracellular cysteine pool can be sustained by cystine uptake or de novo synthesis from serine and homocysteine. Demand for cysteine is increased during tumorigenesis for generating glutathione to deal with oxidative stress. While cultured cells have been shown to be highly dependent on exogenous cystine for proliferation and survival, how diverse tissues obtain and use cysteine in vivo has not been characterized. We comprehensively interrogated cysteine metabolism in normal murine tissues and cancers that arise from them using stable isotope 13C1-serine and 13C6-cystine tracing. De novo cysteine synthesis was highest in normal liver and pancreas and absent in lung tissue, while cysteine synthesis was either inactive or downregulated during tumorigenesis. In contrast, cystine uptake and metabolism to downstream metabolites was a universal feature of normal tissues and tumors. However, differences in glutathione labeling from cysteine were evident across tumor types. Thus, cystine is a major contributor to the cysteine pool in tumors, and glutathione metabolism is differentially active across tumor types. SIGNIFICANCE: Stable isotope 13C1-serine and 13C6-cystine tracing characterizes cysteine metabolism in normal murine tissues and its rewiring in tumors using genetically engineered mouse models of liver, pancreas, and lung cancers.


Assuntos
Cisteína , Neoplasias , Camundongos , Animais , Cisteína/metabolismo , Cistina/metabolismo , Glutationa/metabolismo , Carcinogênese , Serina , Mamíferos/metabolismo
17.
Cell Rep ; 42(3): 112218, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897780

RESUMO

Metabolic routing of nicotinamide (NAM) to NAD+ or 1-methylnicotinamide (MeNAM) has impacts on human health and aging. NAM is imported by cells or liberated from NAD+. The fate of 2H4-NAM in cultured cells, mice, and humans was determined by stable isotope tracing. 2H4-NAM is an NAD+ precursor via the salvage pathway in cultured A549 cells and human PBMCs and in A549 cell xenografts and PBMCs from 2H4-NAM-dosed mice and humans, respectively. 2H4-NAM is a MeNAM precursor in A549 cell cultures and xenografts, but not isolated PBMCs. NAM released from NAD+ is a poor MeNAM precursor. Additional A549 cell tracer studies yielded further mechanistic insight. NAMPT activators promote NAD+ synthesis and consumption. Surprisingly, NAM liberated from NAD+ in NAMPT activator-treated A549 cells is also routed toward MeNAM production. Metabolic fate mapping of the dual NAM sources across the translational spectrum (cells, mice, humans) illuminates a key regulatory node governing NAD+ and MeNAM synthesis.


Assuntos
NAD , Niacinamida , Humanos , Camundongos , Animais , NAD/metabolismo , Niacinamida/farmacologia , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Células Cultivadas , Envelhecimento , Citocinas/metabolismo
18.
bioRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798186

RESUMO

Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are reported to be highest in liver tissue, which is also a hub for lipid production. While the loss of GSH did not cause liver failure, it decreased lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we found that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.

19.
Redox Biol ; 61: 102627, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36841051

RESUMO

Metabolic reprogramming and metabolic plasticity allow cancer cells to fine-tune their metabolism and adapt to the ever-changing environments of the metastatic cascade, for which lipid metabolism and oxidative stress are of particular importance. NADPH is a central co-factor for both lipid and redox homeostasis, suggesting that cancer cells may require larger pools of NADPH to efficiently metastasize. NADPH is recycled through reduction of NADP+ by several enzymatic systems in cells; however, de novo NADP+ is synthesized only through one known enzymatic reaction, catalyzed by NAD+ kinase (NADK). Here, we show that NADK is upregulated in metastatic breast cancer cells enabling de novo production of NADP(H) and the expansion of the NADP(H) pools thereby increasing the ability of these cells to adapt to the challenges of the metastatic cascade and efficiently metastasize. Mechanistically, we found that metastatic signals lead to a histone H3.3 variant-mediated epigenetic regulation of the NADK promoter, resulting in increased NADK levels in cells with metastatic ability. Together, our work presents a previously uncharacterized role for NADK and de novo NADP(H) production as a contributor to breast cancer progression and suggests that NADK constitutes an important and much needed therapeutic target for metastatic breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , NADP/metabolismo , Epigênese Genética , Estresse Oxidativo , NAD/metabolismo , Melanoma Maligno Cutâneo
20.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168428

RESUMO

Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...