Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(37): 8738-8749, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30130967

RESUMO

Ionic liquids are often considered as green alternatives of volatile organic solvents. The thermal behavior of the ionic liquids is relevant for a number of emerging large-scale applications at elevated temperature. Knowledge about the degradation products is indispensable for treatment and recycling of the used ionic liquids. The objective of this paper was an investigation of the short- and long-term stability of several 1-alkyl-3-methylimidazolium halides, determination of the degradation products, and the elucidation of their decomposition patterns and structure-stability relations. Short-term stability and mechanism of thermal degradation were investigated by a self-developed, innovative thermal analysis single-photon ionization time-of-flight mass spectrometry device with Skimmer coupling. The applied technology provides real-time monitoring of the forming species and allows tracing their change during the course of the decomposition. Therein, the almost fragment-free soft ionization with vacuum ultraviolet photons plays a crucial role. We have detected unfragmented molecules whose formation was only assumed by electron ionization. Nevertheless, the main decomposition products of the selected ionic liquids were alkyl imidazoles, alkenes, alkyl halides, and hydrogen halides. From the decomposition products, we have deduced the fragmentation patterns and discussed their interrelation with the length of the alkyl chain and the type of the halide anion. Our results did not suggest the evaporation of the investigated ionic liquids prior to their decomposition under atmospheric conditions. Long-term thermal stability and applicability were determined based on thermogravimetric analysis evaluated with a kinetic model. Thus, the time-dependent maximum operation temperature (MOT) for the respective ionic liquids has been calculated. As a rule, the short-term stability overestimates the long-term decomposition temperatures; the calculated MOT are significantly lower (at least 100 K) than the standardly obtained decomposition temperatures.

2.
Anal Chem ; 88(1): 640-4, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26606252

RESUMO

The design of the so-called "Peltier modulator" is presented. It is a new dual-stage consumable-free thermal modulator for thermal analysis-gas chromatography-mass spectrometry (TA-GC-MS). It requires only electrical power for operation as it facilitates thermo-electric coolers instead of cryogenics for trapping and resistive on-column heating for reinjection. Trapping and desorption temperatures as well as modulation cycles are freely adjustable. The stationary phase for the trapping region can be selected to suit the specific application, since common fused silica capillary is used. The Peltier modulator's performance is demonstrated with a broad range of different standard substances and with heavy crude oil as a complex real life sample. Successful modulation from n-pentane to pyrene (boiling points = 36/394 °C) is presented. The produced peaks show the narrowest bandwidths ever reported for a consumable-free thermal modulator, i.e., 12.8 ± 1.2 ms for n-pentadecane. The Peltier modulator is rugged, cost-effective, requires low maintenance, and decreases security issues significantly, compared to commercial available solutions using liquid N2/CO2.

3.
Anal Chem ; 87(17): 8634-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26226397

RESUMO

This work describes an ultrafast-cycling gas chromatography module (fast-GC module) for direct-sampling gas chromatography/mass spectrometry (GC-MS). The sample can be introduced into the fast-GC module using a common GC injector or any GC × GC modulator. The new fast-GC module offers the possibility to conduct a complete temperature cycle within 30 s. Its thermal mass is minimized by using a specially developed home-built fused silica capillary column stack and a halogen lamp for heat generation, both placed inside a gold-coated quartz glass cylinder. A high airflow blower enables rapid cooling. The new device is highly flexible concerning the used separation column, the applied temperature program, and the integration into existing systems. An application of the fast-GC module is shown in this work by thermal analysis coupled to gas chromatography-mass spectrometry (TA-GC-MS). The continuously evolving gases of the TA are modulated by a liquid CO2 modulator. Because of the rapid cycling of the fast-GC module, it is possible to obtain the best separation while maintaining the online character of the TA. Restrictions in separation and retention time shifting, known from isothermal and normal ramped fast-GC systems, are overcome.

4.
Anal Chem ; 82(23): 9644-53, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21043436

RESUMO

Multi-dimensional analysis (MDA) in analytical chemistry is often applied to improve the selectivity of an analytical device and, therefore, to achieve a better overview of a sample composition. Recently, the hyphenation of thermogravimetry with single photo ionization mass spectrometry (TG-SPIMS) using an electron beam pumped excimer lamp (EBEL) for VUV radiation was applied. The concept of MDA has been realized by upgrading the TG-SPIMS system with a quasi comprehensive chromatographic separation step before the soft ionization (TG-GCxSPIMS). The system was characterized by the thermal analysis of diesel fuel, which has often been investigated by the GCxGC-community and is therefore a well-known sample material in MDA. Data from this measurement are used to explain the three-dimensional data structure and the advantages of the online TG-GCxSPIMS as compared to TG-SPIMS. Subsequently, the thermal decomposition behavior of a polymer, acrylonitrile-butadiene-styrene (ABS), is investigated. TG-GCxSPIMS provides a two-dimensional analysis of the evolved gaseous products. TG relevant data are obtained as well as an improved resolution power to separate isobaric molecular structures without losing any fraction of the samples, as is often the case in heart cutting approaches. Additionally, this solution is not associated with any extension of the measurement time. The assignment of the substance pattern to distinct species is improved as compared to solely using mass spectrometry without a preceding separation step. Furthermore, hitherto undetected compounds have been found in the evolved gases from the thermal degradation of ABS. Finally, a first estimation of the limit of detection has been carried out. This results in a significant decrease of the LOD in case of TG-GCxSPIMS (500 ppt for toluene) as compared to 30 ppb, which could be reached with TG-SPIMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...