Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790950

RESUMO

Obesity results in hepatic fat accumulation, i.e., steatosis. In addition to fat overload, impaired fatty acid ß-oxidation also promotes steatosis. Fatty acid ß-oxidation takes place in the mitochondria and peroxisomes. Usually, very long-chain and branched-chain fatty acids are the first to be oxidized in peroxisomes, and the resultant short chain fatty acids are further oxidized in the mitochondria. Peroxisome biogenesis is regulated by peroxin 16 (PEX16). In liver-specific PEX16 knockout (Pex16Alb-Cre) mice, hepatocyte peroxisomes were absent, but hepatocytes proliferated, and liver mass was enlarged. These results suggest that normal liver peroxisomes restrain hepatocyte proliferation and liver sizes. After high-fat diet (HFD) feeding, body weights were increased in PEX16 floxed (Pex16fl/fl) mice and adipose-specific PEX16 knockout (Pex16AdipoQ-Cre) mice, but not in the Pex16Alb-Cre mice, suggesting that the development of obesity is regulated by liver PEX16 but not by adipose PEX16. HFD increased liver mass in the Pex16fl/fl mice but somehow reduced the already enlarged liver mass in the Pex16Alb-Cre mice. The basal levels of serum triglyceride, free fatty acids, and cholesterol were decreased, whereas serum bile acids were increased in the Pex16Alb-Cre mice, and HFD-induced steatosis was not observed in the Pex16Alb-Cre mice. These results suggest that normal liver peroxisomes contribute to the development of liver steatosis and obesity.

2.
Transl Med UniSa ; 25(1): 16-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143509

RESUMO

Introduction: Ineffective anticancer therapy can result in unnecessary toxicity and the development of resistant clones. Many types of solid tumors, including head and neck squamous cell carcinoma, have been found to contain a small population of cancer stem cells (CSCs) that contribute to tumor propagation, maintenance, and treatment resistance. Materials and methods: Selectively enriched CSCs from primary cancer cell cultures can be used in a chemosensitivity assay for a functional test (ChemoID) that uses patients' live tumor cells to indicate which chemotherapy agent (or "combinations") will kill not only the bulk of tumor cells but also the CSCs that are known to cause cancer to recur. This study aimed to show the potential of testing the sensitivity of CSCs enriched from oral cancer patients' biopsies to conventional chemotherapies. A case series of eleven patients affected by advanced oral squamous cell carcinoma (OSCC) have been included in this study. We compared the results of the CSC assay among all the patients and found that there was variability in the chemotherapy response predicted by the assay. Results: Variability in chemotherapy response was found by the CSC assay in advanced OSCC patients suggesting more precise and personalized therapies to the Oncologist. Conclusions: Variability in chemosensitivity for OSCC warrants the need to investigate further the use of the assay in larger cohorts to gain a broader understanding of the utility of the clinical test.

3.
Free Radic Biol Med ; 208: 221-228, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567517

RESUMO

In peroxisomes, acyl-CoA oxidase (ACOX) oxidizes fatty acids and produces H2O2, and the latter is decomposed by catalase. If ethanol is present, ethanol will be oxidized by catalase coupling with decomposition of H2O2. Peroxisome proliferator-activated receptor α (PPARα) agonist WY-14,643 escalated ethanol clearance, which was not observed in catalase knockout (Cat-/-) mice or partially blocked by an ACOX1 inhibitor. WY-14,643 induced peroxisome proliferation via peroxin 16 (PEX16). PEX16 liver-specific knockout (Pex16Alb-Cre) mice lack intact peroxisomes in liver, but catalase and ACOX1 were upregulated. Due to lacking intact peroxisomes, the upregulated catalase and ACOX1 in the Pex16Alb-Cre mice were mislocated in cytosol and microsomes, and the escalated ethanol clearance was not observed in the Pex16Alb-Cre mice, implicating that the intact functional peroxisomes are essential for ACOX1/catalase to metabolize ethanol. Alcohol-associated liver disease (ALD) is a spectrum of liver disorders ranging from alcoholic steatosis to steatohepatitis. WY-14,643 ameliorated alcoholic steatosis but tended to enhance alcoholic steatohepatitis. In mice lacking nuclear factor erythroid 2-related factor 2 (Nrf2-/-), WY-14,643 still induced PEX16, ACOX1 and catalase to escalate ethanol clearance and blunt alcoholic steatosis, which was not observed in the PPARα-absent Nrf2-/- mice (Pparα-/-/Nrf2-/-) mice, suggesting that WY-14,643 escalates ethanol clearance through PPARα but not through Nrf2.


Assuntos
Etanol , Fígado Gorduroso , Peroxissomos , Animais , Camundongos , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Catalase/genética , Catalase/metabolismo , Proliferação de Células , Etanol/metabolismo , Fígado Gorduroso/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peroxissomos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
4.
Neurooncol Adv ; 5(1): vdad055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287692

RESUMO

Background: Glioblastoma (GBM) is a lethal disease. At least in part, the recurrence of GBM is caused by cancer stem cells (CSCs), which are resistant to chemotherapy. Personalized anticancer therapy against CSCs can improve treatment outcomes. We present a prospective cohort study of 40 real-world unmethylated Methyl-guanine-methyl-transferase-promoter GBM patients treated utilizing a CSC chemotherapeutics assay-guided report (ChemoID). Methods: Eligible patients who underwent surgical resection for recurrent GBM were included in the study. Most effective chemotherapy treatments were chosen based on the ChemoID assay report from a panel of FDA-approved chemotherapies. A retrospective chart review was conducted to determine OS, progression-free survival, and the cost of healthcare costs. The median age of our patient cohort was 53 years (24-76). Results: Patients treated prospectively with high-response ChemoID-directed therapy, had a median overall survival (OS) of 22.4 months (12.0-38.4) with a log-rank P = .011, compared to patients who could be treated with low-response drugs who had instead an OS of 12.5 months (3.0-27.4 months). Patients with recurrent poor-prognosis GBM treated with high-response therapy had a 63% probability to survive at 12 months, compared to 27% of patients who were treated with low-response CSC drugs. We also found that patients treated with high-response drugs on average had an incremental cost-effectiveness ratio (ICER) of $48,893 per life-year saved compared to $53,109 of patients who were treated with low-response CSC drugs. Conclusions: The results presented here suggest that the ChemoID Assay can be used to individualize chemotherapy choices to improve poor-prognosis recurrent GBM patient survival and to decrease the healthcare cost that impacts these patients.

5.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298315

RESUMO

The mechanistic target of rapamycin (mTOR) kinase is a component of two signaling complexes that are known as mTOR complex 1 (mTORC1) and mTORC2. We sought to identify mTOR-phosphorylated proteins that are differently expressed in clinically resected clear cell renal cell carcinoma (ccRCC) relative to pair-matched normal renal tissue. Using a proteomic array, we found N-Myc Downstream Regulated 1 (NDRG1) showed the greatest increase (3.3-fold) in phosphorylation (on Thr346) in ccRCC. This was associated with an increase in total NDRG1. RICTOR is a required subunit in mTORC2, and its knockdown decreased total and phospho-NDRG1 (Thr346) but not NDRG1 mRNA. The dual mTORC1/2 inhibitor, Torin 2, significantly reduced (by ~100%) phospho-NDRG1 (Thr346). Rapamycin is a selective mTORC1 inhibitor that had no effect on the levels of total NDRG1 or phospho-NDRG1 (Thr346). The reduction in phospho-NDRG1 (Thr346) due to the inhibition of mTORC2 corresponded with a decrease in the percentage of live cells, which was correlated with an increase in apoptosis. Rapamycin had no effect on ccRCC cell viability. Collectively, these data show that mTORC2 mediates the phosphorylation of NDRG1 (Thr346) in ccRCC. We hypothesize that RICTOR and mTORC2-mediated phosphorylation of NDRG1 (Thr346) promotes the viability of ccRCC cells.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
6.
Cell Rep Med ; 4(5): 101025, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37137304

RESUMO

Therapy-resistant cancer stem cells (CSCs) contribute to the poor clinical outcomes of patients with recurrent glioblastoma (rGBM) who fail standard of care (SOC) therapy. ChemoID is a clinically validated assay for identifying CSC-targeted cytotoxic therapies in solid tumors. In a randomized clinical trial (NCT03632135), the ChemoID assay, a personalized approach for selecting the most effective treatment from FDA-approved chemotherapies, improves the survival of patients with rGBM (2016 WHO classification) over physician-chosen chemotherapy. In the ChemoID assay-guided group, median survival is 12.5 months (95% confidence interval [CI], 10.2-14.7) compared with 9 months (95% CI, 4.2-13.8) in the physician-choice group (p = 0.010) as per interim efficacy analysis. The ChemoID assay-guided group has a significantly lower risk of death (hazard ratio [HR] = 0.44; 95% CI, 0.24-0.81; p = 0.008). Results of this study offer a promising way to provide more affordable treatment for patients with rGBM in lower socioeconomic groups in the US and around the world.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Resultado do Tratamento , Células-Tronco Neoplásicas
7.
J Med Chem ; 66(7): 4294-4323, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37000154

RESUMO

The heterocyclic vanilloid compound capsaicin is responsible for the spicy and pungent flavor of chili peppers. Several convergent studies have shown that capsaicin suppresses the growth of multiple human cancers. Apart from capsaicin, natural and synthetic capsaicin-like compounds display growth suppressive activity in human cancers. The pharmacophore of capsaicin is comprised of three regions, namely region A (the aromatic ring), region B (the amide bond), and region C (the side chain). The present manuscript describes the isolation and synthesis of capsaicin analogs which have structural modifications in region B of the molecule. Furthermore, the pharmacokinetic properties, anticancer activity of region B capsaicin analogs, as well as the signaling pathways (underlying the growth-inhibitory effects of region B capsaicin analogs) have also been described. The discovery of novel, second-generation region B capsaicin analogs may foster the hope of innovative nutrition-based combination therapies in human cancers.


Assuntos
Antineoplásicos , Capsicum , Humanos , Capsaicina/farmacologia , Capsicum/química , Capsicum/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902373

RESUMO

The repair of orthopedic and maxillofacial defects in modern medicine currently relies heavily on the use of autograft, allograft, void fillers, or other structural material composites. This study examines the in vitro osteo regenerative potential of polycaprolactone (PCL) tissue scaffolding, fabricated via a three-dimensional (3D) additive manufacturing technology, i.e., a pneumatic micro extrusion (PME) process. The objectives of this study were: (i) To examine the innate osteoinductive and osteoconductive potential of 3D-printed PCL tissue scaffolding and (ii) To perform a direct in vitro comparison of 3D-printed PCL scaffolding with allograft Allowash® cancellous bone cubes with regards to cell-scaffold interactions and biocompatibility with three primary human bone marrow (hBM) stem cell lines. This study specifically examined cell survival, cell integration, intra-scaffold cell proliferation, and differentiation of progenitor cells to investigate the potential of 3D-printed PCL scaffolds as an alternative to allograft bone material for the repair of orthopedic injuries. We found that mechanically robust PCL bone scaffolds can be fabricated via the PME process and the resulting material did not elicit detectable cytotoxicity. When the widely used osteogenic model SAOS-2 was cultured in PCL extract medium, no detectable effect was observed on cell viability or proliferation with multiple test groups showing viability ranges of 92.2% to 100% relative to a control group with a standard deviation of ±10%. In addition, we found that the honeycomb infill pattern of the 3D-printed PCL scaffold allowed for superior mesenchymal stem-cell integration, proliferation, and biomass increase. When healthy and active primary hBM cell lines, having documented in vitro growth rates with doubling times of 23.9, 24.67, and 30.94 h, were cultured directly into 3D-printed PCL scaffolds, impressive biomass increase values were observed. It was found that the PCL scaffolding material allowed for biomass increase values of 17.17%, 17.14%, and 18.18%, compared to values of 4.29% for allograph material cultured under identical parameters. It was also found that the honeycomb scaffold infill pattern was superior to the cubic and rectangular matrix structures, and provided a superior microenvironment for osteogenic and hematopoietic progenitor cell activity and auto-differentiation of primary hBM stem cells. Histological and immunohistochemical studies performed in this work confirmed the regenerative potential of PCL matrices in the orthopedic setting by displaying the integration, self-organization, and auto-differentiation of hBM progenitor cells within the matrix. Differentiation products including mineralization, self-organizing "proto-osteon" structures, and in vitro erythropoiesis were observed in conjunction with the documented expression of expected bone marrow differentiative markers including CD-99 (>70%), CD-71 (>60%), and CD-61 (>5%). All of the studies were conducted without the addition of any exogenous chemical or hormonal stimulation and exclusively utilized the abiotic and inert material polycaprolactone; setting this work apart from the vast majority of contemporary investigations into synthetic bone scaffold fabrication In summary, this study demonstrates the unique clinical potential of 3D-printed PCL scaffolds for stem cell expansion and incorporation into advanced microstructures created via PME manufacturing to generate a physiologically inert temporary bony defect graft with significant autograft features for enhanced end-stage healing.


Assuntos
Caproatos , Células-Tronco Mesenquimais , Alicerces Teciduais , Humanos , Células da Medula Óssea , Caproatos/farmacologia , Osteogênese , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Biochem Biophys Res Commun ; 613: 47-52, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35526488

RESUMO

Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid oxidation (FAO). Usually, very-long chain fatty acids are first activated by acyl-CoA synthetase (ACS) to generate acyl-CoA for oxidation by acyl-CoA oxidase (ACOX) in peroxisomes, and the resultant shorter chain fatty acids will be further oxidized in mitochondria. ACS long-chain family member 4 (ACSL4) preferentially uses arachidonic acid (AA) as substrates to synthesize arachidonoyl-CoA. Arachidonoyl-CoA is usually esterified into phospholipids. When AA is released by phospholipase A2 (PLA2) from phospholipids, it will be used for prostaglandin synthesis by cyclooxygenases (COX). In this study, when PPARα agonist WY-14,643 was mixed in liquid Lieber-DeCarli ethanol or control diets and fed to mice, liver PLA2, COX-2, and ACOX1 were induced but ACSL4 was inhibited, suggesting that AA released by PLA2 from phospholipid will be metabolized to prostaglandin via COX-2 instead of being synthesized into acyl-CoA by ACSL4. However, liver prostaglandin E2 (PGE2), a major component of prostaglandin, was not increased with the induced COX-2 but decreased by WY-14,643. ACOX1 specific inhibitor mixed in the liquid diets restored both the WY-14,643-suppressed liver TG and PGE2, but COX-2 specific inhibitor celecoxib mixed in the liquid diets reversed the WY-14,643-suppressed liver TG but not liver PGE2 contents. These results suggest that induction of PLA2, COX-2 and ACOX1 orchestrates to increase oxidation of AA/PGE2, which constitutes one new mechanism by which PPARα induces peroxisomal FAO and inhibits ethanol-induced liver fat accumulation.


Assuntos
Acil-CoA Oxidase , Ciclo-Oxigenase 2 , Fígado Gorduroso Alcoólico , PPAR alfa , Fosfolipases A2 , Pirimidinas , Acil-CoA Oxidase/metabolismo , Animais , Coenzima A/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Camundongos , PPAR alfa/agonistas , PPAR alfa/metabolismo , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
Biochem Pharmacol ; 192: 114678, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265279

RESUMO

Fibroblast growth factor 21 (FGF21) is mainly regulated by peroxisome proliferator-activated receptor α (PPARα) in liver. The PPARα-FGF21 axis protects against alcohol-related liver disease (ALD). FGF21 exerts its effect via FGF receptor 1 (FGFR1). However, liver specific FGFR1 abrogation had no effect on ALD. Adipose tissues highly express FGFR1. When adipocyte specific FGFR1 knockout (fgfr1adipoQ-cre) mice and corresponding normal control (fgfr1fl/fl) mice were fed with Lieber-DeCarli ethanol liquid diet for 3 weeks, liver triglyceride (TG) accumulation was increased in the fgfr1fl/fl mice to a greater extent than in the fgfr1adipoQ-cre mice. When PPARα agonist WY-14,643 was added in the liquid ethanol diet at 10 mg/L, the ethanol-induced liver TG accumulation was blunted in the fgfr1fl/fl mice but not in the fgfr1adipoQ-cre mice. There was no significant difference in WY-14,643-induced fatty acid oxidation, ethanol metabolism, and oxidative stress between the fgfr1fl/fl and fgfr1adipoQ-cre mice. Interestingly, adipose atrophy was induced by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. Serum free fatty acid was also decreased by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. These results suggest that WY-14,643 inhibits alcoholic fatty liver and regulates adipose tissue mass and fat mobilization from adipose tissues to liver in an adipocyte FGFR1-dependent manner.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Etanol/toxicidade , Fígado Gorduroso Alcoólico/prevenção & controle , PPAR alfa/agonistas , Pirimidinas/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Tecido Adiposo/metabolismo , Animais , Atrofia/induzido quimicamente , Atrofia/metabolismo , Etanol/administração & dosagem , Fígado Gorduroso Alcoólico/metabolismo , Feminino , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo , Proliferadores de Peroxissomos/uso terapêutico , Proliferadores de Peroxissomos/toxicidade , Pirimidinas/toxicidade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
11.
Free Radic Biol Med ; 169: 283-293, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33892114

RESUMO

Peroxisome proliferator-activated receptor α (PPARα), a fatty acid oxidation regulator, inhibits alcohol-induced fatty liver (AFL). PPARα agonist WY-14,643 ameliorates AFL. Nicotine enhances AFL. In this study, we investigated whether PPARα activation also blocks nicotine-enhanced AFL. Mice were fed liquid diets containing ethanol in the presence or absence of nicotine, WY-14,643 was added to the above diets at 10 mg/L. The results showed that WY-14,643 blunted AFL and nicotine-enhanced AFL, which was paralleled with striking induction of PPARα target genes. However, serum ALT was dramatically increased by the ethanol/WY-14,643 feeding and was further increased by nicotine/ethanol/WY-14,643 feeding, which was confirmed by necro-inflammation and elevated oxidative stress. Interestingly, serum alcohol levels were dramatically decreased by WY-14,643. Ethanol is mainly metabolized by alcohol dehydrogenase (ADH), cytochrome P450 2E1 (CYP2E1) and catalase. ADH and CYP2E1 were not increased by WY-14,643, but catalase was induced. What is more, injection of catalase inhibitor increased serum ethanol. Decreased serum alcohol, attenuated fatty liver, and enhanced liver injury were not induced by WY-14,643 in mice lacking PPARα. In conclusion, PPARα activation by WY-14,643 attenuates alcohol/nicotine-induced fatty liver but deteriorates ethanol/nicotine-induced liver injury; WY-14,643 enhances ethanol metabolism via induction of catalase.


Assuntos
PPAR alfa , Pirimidinas , Animais , Catalase/genética , Etanol , Fígado , Camundongos , PPAR alfa/genética
12.
Metab Syndr Relat Disord ; 19(5): 281-287, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33566732

RESUMO

Background: Obesity affects ∼20% of children in the United States and reports of successful dietary treatment are lacking. This study aimed to determine the change in body weight in severely obese youth after carbohydrate-restricted dietary intervention. Methods: This single-center study of a carbohydrate-restricted diet (≤30 grams per day), with unlimited calories, fat, and protein for 3-4 months, examined two groups of severely obese youth of ages 5-18 years: Group A, retrospectively reviewed charts of severely obese youth referred to the Pediatric Obesity Clinic at Hoops Family Children's Hospital and the Ambulatory Division of Marshall Pediatrics, Marshall University School of Medicine, in Huntington, WV, between July 1, 2014 and June 30, 2017 (n = 130), and Group B, prospective participants, referred between July 1, 2018 and December 31, 2018, followed with laboratory studies pre- and postdietary intervention (n = 8). Results: In Group A, 310 participants began the diet, 130 (42%) returned after 3-4 months. Group B had 14 enrollees who began the diet, and 8 followed up at 3-4 months (57%). Girls compared with boys were more likely to complete the diet (P = 0.02). Participants <12 years age were almost twice as likely to complete the diet compared with those 12-18 years (64% vs. 36%, P < 0.01); however, the older group subjects who completed the diet had the same percentage of weight loss compared with those <12 years (6.9% vs. 6.9%). Group A had reductions in weight of 5.1 kg (P < 0.001), body mass index (BMI) 2.5 kg/m2 (P < 0.001), and percentage weight loss 6.9% (P < 0.001). Group B had reductions in weight 9.6 kg (P < 0.01), BMI 4 kg/m2 (P < 0.01), and percentage weight loss 9% (P < 0.01). In addition, participants had significant reductions of fasting serum insulin (P < 0.01), triglycerides (P < 0.01), and 20-hydroxyeicosatetraenoic acid (P < 0.01). Conclusions: This study demonstrated a carbohydrate-restricted diet, utilized short term, effectively reduced weight in a large percentage of severely obese youth, and can be replicated in a busy primary care office.


Assuntos
Dieta com Restrição de Carboidratos , Obesidade Infantil , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Obesidade Infantil/dietoterapia , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
13.
Am J Physiol Gastrointest Liver Physiol ; 319(5): G626-G635, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877213

RESUMO

Obesity is linked to nonalcoholic steatohepatitis. Peroxisome proliferator-activated receptor-α (PPARα) regulates lipid metabolism. Cytochrome P-450 2A5 (CYP2A5) is a potential antioxidant and CYP2A5 induction by ethanol is CYP2E1 dependent. High-fat diet (HFD)-induced obesity and steatosis are more severe in CYP2A5 knockout (cyp2a5-/-) mice than in wild-type mice although PPARα is elevated in cyp2a5-/- mice. To examine why the upregulated PPARα failed to prevent the enhanced steatosis in cyp2a5-/- mice, we abrogate the upregulated PPARα in cyp2a5-/- mice by cross-breeding cyp2a5-/- mice with PPARα knockout (pparα-/-) mice to create pparα-/-/cyp2a5-/- mice. The pparα-/-/cyp2a5-/- mice, pparα-/- mice, and cyp2a5-/- mice were fed HFD to induce steatosis. After HFD feeding, more severe steatosis was developed in pparα-/-/cyp2a5-/- mice than in pparα-/- mice and cyp2a5-/- mice. The pparα-/-/cyp2a5-/- mice and pparα-/- mice exhibited comparable and impaired lipid metabolism. Elevated serum alanine transaminase and liver interleukin-1ß, liver inflammatory cell infiltration, and foci of hepatocellular ballooning were observed in pparα-/-/cyp2a5-/- mice but not in pparα-/- mice and cyp2a5-/- mice. In pparα-/-/cyp2a5-/- mice, although redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 and its target antioxidant genes were upregulated as a compensation, thioredoxin was suppressed, and phosphorylation of JNK and formation of nitrotyrosine adduct were increased. Liver glutathione was decreased, and lipid peroxidation was increased. Interestingly, inflammation and fibrosis were all observed within the clusters of lipid droplets, and these lipid droplet clusters were all located inside the area with CYP2E1-positive staining. These results suggest that HFD-induced fibrosis in pparα-/-/cyp2a5-/- mice is associated with steatosis, and CYP2A5 interacts with PPARα to participate in regulating steatohepatitis-associated fibrosis.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/genética , Dieta Hiperlipídica/efeitos adversos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética , Animais , Peso Corporal , Gotículas Lipídicas/metabolismo , Peroxidação de Lipídeos , Cirrose Hepática/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/complicações
14.
Pathol Res Pract ; 216(6): 152965, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32360251

RESUMO

BACKGROUND: In the United States endometrial carcinoma is the most common female gynecologic malignancy. An average of more than 60,000 new cases of endometrial carcinomas have been diagnosed yearly over the past 5 years, with a higher incidence occurring in the central Appalachian states of Ohio and West Virginia. In the U.S., the national average of newly diagnosed endometrial carcinomas is 26.8 in every 100,000 women, while in the states of Ohio and West Virginia the average is 30.5 and 31.1 in every 100,000 women, respectively. This notable increase in the incidence of endometrial carcinomas may be due a variety of elevated risk factors including but not limited to: tobacco use, obesity, and genetic predisposition of the predominant demographic. The American Cancer Society estimates that approximately 55,000 new cases of endometrial carcinoma will be diagnosed in 2020 yet, this disease is widely considered understudied and under-represented in mainstream cancer research circles. METHODS: The aim of this study was to quantitate the co-expression of two DNA repair proteins poly-ADP-ribose polymerase 1 and 2 (Parp-1 and Parp-2) by enzyme- linked immuno-sorbent assay (ELISA) in 60 endometrioid endometrial tumor samples and compare their expression to matched non-malignant endometrial tissue from the same corresponding donors from central Appalachia. RESULTS: We found that Parp-1 was significantly overexpressed in endometrial carcinoma relative to corresponding normal tissue. This overexpression implicates Parp inhibition therapy as a possible treatment for the disease. Our results also found a protective effect of native Parp-2 expression in non-malignant endometrial tissue with each 1 ng/mL increase in PARP-2 concentration in normal tissue was associated with a 10 % reduction in the hazard of tumor progression (HR = 0.90; p = 0.039) and a 21 % reduction in the hazard of death (HR = 0.79; p = 0.044). CONCLUSIONS: This study demonstrated the over-expression of the druggable target Parp-1 in endometrial adenocarcinoma and observed a strong negative correlation of native Parp-2 expression and disease progression via the quantification of the Parp proteins using enzyme- linked immuno-sorbent assay (ELISA) assays.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias do Endométrio/patologia , Poli(ADP-Ribose) Polimerase-1/biossíntese , Poli(ADP-Ribose) Polimerases/biossíntese , Adenocarcinoma/enzimologia , Idoso , Neoplasias do Endométrio/enzimologia , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico
15.
Transl Oncol ; 13(4): 100755, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32197147

RESUMO

BACKGROUND: Chemotherapy-resistant cancer stem cells (CSC) may lead to tumor recurrence in glioblastoma (GBM). The poor prognosis of this disease emphasizes the critical need for developing a treatment stratification system to improve outcomes through personalized medicine. METHODS: We present a case series of 12 GBM and 2 progressive anaplastic glioma cases from a single Institution prospectively treated utilizing a CSC chemotherapeutics assay (ChemoID) guided report. All patients were eligible to receive a stereotactic biopsy and thus undergo ChemoID testing. We selected one of the most effective treatments based on the ChemoID assay report from a panel of FDA approved chemotherapy as monotherapy or their combinations for our patients. Patients were evaluated by MRI scans and response was assessed according to RANO 1.1 criteria. RESULTS: Of the 14 cases reviewed, the median age of our patient cohort was 49 years (21-63). We observed 6 complete responses (CR) 43%, 6 partial responses (PR) 43%, and 2 progressive diseases (PD) 14%. Patients treated with ChemoID assay-directed therapy, in combination with other modality of treatment (RT, LITT), had a longer median overall survival (OS) of 13.3 months (5.4-NA), compared to the historical median OS of 9.0 months (8.0-10.8 months) previously reported. Notably, patients with recurrent GBM or progressive high-grade glioma treated with assay-guided therapy had a 57% probability to survive at 12 months, compared to the 27% historical probability of survival observed in previous studies. CONCLUSIONS: The results presented here suggest that the ChemoID Assay has the potential to stratify individualized chemotherapy choices to improve recurrent and progressive high-grade glioma patient survival. IMPORTANCE OF THE STUDY: Glioblastoma (GBM) and progressive anaplastic glioma are the most aggressive brain tumor in adults and their prognosis is very poor even if treated with the standard of care chemoradiation Stupp's protocol. Recent knowledge pointed out that current treatments often fail to successfully target cancer stem cells (CSCs) that are responsible for therapy resistance and recurrence of these malignant tumors. ChemoID is the first and only CLIA (clinical laboratory improvements amendment) -certified and CAP (College of American Pathologists) -accredited chemotherapeutic assay currently available in oncology clinics that examines patient's derived CSCs susceptibility to conventional FDA (Food and Drugs Administration) -approved drugs. In this study we observed that although the majority of our patients (71.5%) presented with unfavorable prognostic predictors (wild type IDH-1/2 and unmethylated MGMT promoter), patients treated with ChemoID assay-directed therapy had an overall response rate of 86% and increased median OS of 13.3 months compared to the historical median OS of 9.1 months (8.1-10.1 months) previously reported [1] suggesting that the ChemoID assay may be beneficial in personalizing treatment strategies.

16.
Biomed Pharmacother ; 118: 109317, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31404777

RESUMO

Cancer progression is a complex multistep process comprising of angiogenesis of the primary tumor, its invasion into the surrounding stroma and its migration to distant organs to produce metastases. Nutritional compounds of the "capsaicinoid" family regulate angiogenesis, invasion and metastasis of tumors. Capsaicinoids display robust anti-angiogenic activity in both cell culture and mice models. However, conflicting reports exist about the effect of capsaicinoids on invasion of metastasis of cancers. While some published reports have described an anti-invasive and anti-metastatic role for capsaicinoids, others have argued that capsaicinoids stimulate invasion and metastasis of cancers. The present review article summarizes these findings involving the bioactivity of capsaicin in angiogenesis, invasion and metastasis of cancer. A survey of literature indicate that they are several articles summarizing the growth-inhibitory activity of capsaicinoids but few describe its effects on angiogenesis, invasion and metastasis in detail. Our review article fills this gap of knowledge. The discovery of a second generation of natural and synthetic capsaicin analogs (with anti-tumor activity) will pave the way to improved strategies for the treatment of several human cancers.


Assuntos
Capsaicina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Animais , Capsaicina/química , Capsaicina/farmacologia , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Transdução de Sinais
17.
Int J Mol Sci ; 20(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30708975

RESUMO

Lack of standardization of clinically compliant culture protocols of mesenchymal stem cells for re-implantation in humans have hindered clinical progress in the field of tissue regeneration to repair maxillofacial and orthopedic defects. The goal of this study was to establish a clinically relevant osteogenic protocol for collection and expansion of autologous stem cells to be used at Marshall University for re-implantation and repair of maxillofacial and orthopedic conditions. Human bone marrow (hBM) samples were collected from patients undergoing intramedullary nail fixation for closed femoral fractures. hBM mesenchymal cells were expanded by growing them first in Petri dishes for two weeks, followed by a week of culture using Perfecta 3D Hanging Drop Plates®. Various scaffold materials were tested and analyzed for cellular integration, vitality, and differentiation capacity of harvested hBM-MSCs including: 60/40 blend of hydroxyapatite biomatrix; Acellular bone composite discs; Allowash®, cancellous bone cubes; PLGA (poly lactic-co-glycolic acid); and Woven chitin derived fiber. We found that the 3D spheroid culture allowed production of hBM mesenchymal cells that retained osteoblast differentiation capacity over a monolayer culture of hBM-MSCs without the need to use chemical or hormonal modulation. We also observed that hydroxyapatite and Allowash cancellous bone scaffolds allowed better cell integration and viability properties as compared to other materials tested in this study. In conclusion, the multimodal culture methodology we developed creates actively differentiating stem-cell spheroids that can then be readily utilized in clinical practices to improve the regeneration of tissues of the head and the body.


Assuntos
Fraturas Ósseas/terapia , Células-Tronco Mesenquimais/citologia , Osteogênese , Esferoides Celulares/citologia , Alicerces Teciduais/química , Adulto , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Criança , Durapatita/química , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Medicina Regenerativa , Transplante Autólogo
18.
Cureus ; 10(8): e3234, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30410840

RESUMO

High grade astrocytomas such as anaplastic astrocytoma and glioblastoma multiforme are aggressive central nervous system malignancies with a poor prognosis. Due to shortened survival times, their devastating effects are usually localized intracranially and rarely metastasize outside of the central nervous system. When metastases occur, they usually present in patients with longer survival times and they typically coincide with a primary site recurrence. We present a rare case of metastases from a high-grade astrocytoma/glioblastoma to the pleura, bones and liver within six months of diagnosis, without primary site recurrence.

19.
South Med J ; 111(8): 457-459, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30075468

RESUMO

A 38-year-old woman was found to have a large placental chorioangioma. The fetus was studied using ultrasound. The pregnancy became complicated by hydrops fetalis, polyhydramnios, and abruptio placenta. The infant delivered at 29 weeks' gestational age. The neonatal course was complicated by nonimmune hydrops fetalis, respiratory distress syndrome, anemia, pulmonary hemorrhage, intraventricular hemorrhage, necrotizing enterocolitis, and bronchopulmonary dysplasia. The infant was discharged home with breastfeeding and off oxygen at 50 days of life. This case represents the multidisciplinary approach to the pregnancy complicated by a large placental chorioangioma and the resulting premature neonate with nonimmune hydrops fetalis.


Assuntos
Hemangioma/complicações , Hidropisia Fetal/etiologia , Placenta/irrigação sanguínea , Adulto , Anemia/etiologia , Feminino , Hemorragia/etiologia , Humanos , Recém-Nascido , Placenta/anormalidades , Gravidez , Complicações na Gravidez/etiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/etiologia , Ultrassonografia/métodos
20.
Biochem Pharmacol ; 129: 54-66, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104436

RESUMO

Small cell lung cancer (SCLC) is characterized by excellent initial response to chemotherapy and radiation therapy with a majority of the patients showing tumor shrinkage and even remission. However, the challenge with SCLC therapy is that patients inevitably relapse and subsequently do not respond to the first line treatment. Recent clinical studies have investigated the possibility of camptothecin-based combination therapy as first line treatment for SCLC patients. Conventionally, camptothecin is used for recurrent SCLC and has poor survival outcomes. Therefore, drugs which can improve the therapeutic index of camptothecin should be valuable for SCLC therapy. Extensive evidence shows that nutritional compounds like capsaicin (the spicy compound of chili peppers) can improve the anti-cancer activity of chemotherapeutic drugs in both cell lines and animal models. Statistical analysis shows that capsaicin synergizes with camptothecin to enhance apoptosis of human SCLC cells. The synergistic activity of camptothecin and capsaicin is observed in both classical and variant SCLC cell lines and, in vivo, in human SCLC tumors xenotransplanted on chicken chorioallantoic membrane (CAM) models. The synergistic activity of capsaicin and camptothecin are mediated by elevation of intracellular calcium and the calpain pathway. Our data foster hope for novel nutrition based combination therapies in SCLC.


Assuntos
Calpaína/metabolismo , Camptotecina/farmacologia , Capsaicina/farmacologia , Carcinoma de Células Pequenas/patologia , Neoplasias Pulmonares/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Pequenas/metabolismo , Linhagem Celular Tumoral , Galinhas , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...