Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 90(7): 1776-1786, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844849

RESUMO

Urbanisation and anthropogenic alteration of ecosystems has led to conflict between humans and wildlife. Such conflict is often observed in apex predators. Although human-wildlife conflict has been extensively studied, male/female differences in behaviour are rarely considered. We investigated male/female differences in foraging behaviour of the predatory/scavenging brown skua Catharacta antarctica lonnbergi breeding on a New Zealand island nature reserve in proximity to farmland. These skuas are subject to culling, when perceived as a threat to livestock. As part of a long-term ecological study, we used high-resolution Global Positioning System (GPS) devices to characterise the space-use of foraging brown skuas. We also analysed stable isotopes of carbon (δ13 C) and nitrogen (δ15 N) from modern and archived blood samples to investigate possible changes in diet over the past ~30 years. Analysis of 100 GPS tracks collected from 2014 to 2016 demonstrated that males and females consistently visited different habitats. Males spent most of their time close to their breeding territory on the island nature reserve and females frequently visited a farmed island approximately two kilometres away. Consistent with this finding, we show that male and female skuas also differed markedly in their diets: males specialised on burrow-nesting white-faced storm petrels Pelagodroma marina (80%) with only a small proportion of sheep remains Ovis aries (<6%) contributing to their diet. In contrast, female diet comprised 27% white-faced storm petrels, other seabirds (18%) and a relatively large proportion of sheep remains (47%). Further, our data (186 blood samples from 122 individuals) show that this male/female difference in diet has persisted at least since 1987. Because females fed disproportionally on sheep remains, they may be more vulnerable to being culled by farmers. Importantly, our case study suggests that intersexual differences in diet and foraging patterns can have major implications for the reproduction and survival of apex predators that interact with farming. We strongly suggest that intersexual differences in behaviour should be considered when investigating human-wildlife conflicts.


Assuntos
Charadriiformes , Ecossistema , Animais , Animais Selvagens , Aves , Feminino , Humanos , Masculino , Nova Zelândia , Ovinos
2.
Toxins (Basel) ; 12(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752046

RESUMO

Ciguatera fish poisoning (CFP) is currently the most common marine biotoxin food poisoning worldwide, associated with human consumption of circumtropical fish and marine invertebrates that are contaminated with ciguatoxins. Ciguatoxins are very potent sodium-channel activator neurotoxins, that pose risks to human health at very low concentrations (>0.01 ng per g of fish flesh in the case of the most potent Pacific ciguatoxin). Symptoms of CFP are nonspecific and intoxication in humans is often misdiagnosed. Presently, there is no medically approved treatment of ciguatera. Therefore, to mitigate the risks of CFP, reliable detection of ciguatoxins prior to consumption of fish tissue is acutely needed, which requires application of highly sensitive and quantitative analytical tests. During the last century a number of methods have been developed to identify and quantify the concentration of ciguatoxins, including in vivo animal assays, cell-based assays, receptor binding assays, antibody-based immunoassays, electrochemical methods, and analytical techniques based on coupling of liquid chromatography with mass spectrometry. Development of these methods, their various advantages and limitations, as well as future challenges are discussed in this review.


Assuntos
Ciguatoxinas/análise , Peixes , Contaminação de Alimentos/análise , Animais , Ciguatera/prevenção & controle , Ciguatoxinas/toxicidade , Humanos
3.
R Soc Open Sci ; 6(1): 181702, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800399

RESUMO

Dispersal is fundamental to population dynamics and hence extinction risk. The dispersal success of animals depends on the biophysical structure of their environments and their biological traits; however, comparatively little is known about how evolutionary trade-offs among suites of biological traits affect dispersal potential. We developed a spatially explicit agent-based simulation model to evaluate the influence of trade-offs among a suite of biological traits on the dispersal success of vagile animals in fragmented landscapes. We specifically chose traits known to influence dispersal success: speed of movement, perceptual range, risk of predation, need to forage during dispersal, and amount of suitable habitat required for successful settlement in a patch. Using the metric of relative dispersal success rate, we assessed how the costs and benefits of evolutionary investment in these biological traits varied with landscape structure. In heterogeneous environments with low habitat availability and scattered habitat patches, individuals with more equal allocation across the trait spectrum dispersed most successfully. Our analyses suggest that the dispersal success of animals in heterogeneous environments is highly dependent on hierarchical interactions between trait trade-offs and the geometric configurations of the habitat patches in the landscapes through which they disperse. In an applied sense, our results indicate potential for ecological mis-alignment between species' evolved suites of dispersal-related traits and altered environmental conditions as a result of rapid global change. In many cases identifying the processes that shape patterns of animal dispersal, and the consequences of abiotic changes for these processes, will require consideration of complex relationships among a range of organism-specific and environmental factors.

4.
Science ; 359(6374): 466-469, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371471

RESUMO

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.


Assuntos
Migração Animal , Atividades Humanas , Mamíferos , Animais , Sistemas de Informação Geográfica , Humanos
5.
PLoS One ; 12(8): e0181592, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792958

RESUMO

The black-tailed dusky antechinus (Antechinus arktos) is an endangered, small carnivorous marsupial endemic to Australia, which occurs at low population density along with abundant sympatric populations of other small mammals: Antechinus stuartii, Rattus fuscipes and Melomys cervinipes. Using A. arktos as a model species, we aimed to evaluate the effectiveness of infrared digital camera traps for detecting and differentiating small mammals and to comment on the broad applicability of this methodology. We also sought to understand how the detection probabilities of our target species varied over time and characterize their activity patterns. We installed 11 infrared cameras at one of only three known sites where A. arktos occurs for five consecutive deployments. Cameras were fixed to wooden stakes and oriented vertically, 35 cm above ground, directly facing bait containers. Using this method, we successfully recorded and identified individuals from all four species of small mammal known previously in the area from live trapping, including A. arktos. This validates the effectiveness of the infrared camera type and orientation for small mammal studies. Periods of activity for all species were highly coincident, showing a strong peak in activity during the same two-hour period immediately following sunset. A. arktos, A. stuartii and M. cervinipes also displayed a strong negative linear relationship between detection probability and days since deployment. This is an important finding for camera trapping generally, indicating that routine camera deployment lengths (of one-to-two weeks) between baiting events may be too long when targeting some small mammals.


Assuntos
Raios Infravermelhos , Marsupiais/classificação , Fotografação/métodos , Simpatria/fisiologia , Animais , Austrália , Especificidade da Espécie
6.
PLoS One ; 10(4): e0122811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25922935

RESUMO

We present a simple framework for classifying mutually exclusive behavioural states within the geospatial lifelines of animals. This method involves use of three sequentially applied statistical procedures: (1) behavioural change point analysis to partition movement trajectories into discrete bouts of same-state behaviours, based on abrupt changes in the spatio-temporal autocorrelation structure of movement parameters; (2) hierarchical multivariate cluster analysis to determine the number of different behavioural states; and (3) k-means clustering to classify inferred bouts of same-state location observations into behavioural modes. We demonstrate application of the method by analysing synthetic trajectories of known 'artificial behaviours' comprised of different correlated random walks, as well as real foraging trajectories of little penguins (Eudyptula minor) obtained by global-positioning-system telemetry. Our results show that the modelling procedure correctly classified 92.5% of all individual location observations in the synthetic trajectories, demonstrating reasonable ability to successfully discriminate behavioural modes. Most individual little penguins were found to exhibit three unique behavioural states (resting, commuting/active searching, area-restricted foraging), with variation in the timing and locations of observations apparently related to ambient light, bathymetry, and proximity to coastlines and river mouths. Addition of k-means clustering extends the utility of behavioural change point analysis, by providing a simple means through which the behaviours inferred for the location observations comprising individual movement trajectories can be objectively classified.


Assuntos
Comportamento Animal , Spheniscidae/fisiologia , Distribuição Animal , Animais , Análise por Conglomerados , Sistemas de Informação Geográfica , Movimento , Telemetria
7.
Sci Total Environ ; 534: 79-84, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25669144

RESUMO

The presence and movements of organisms both reflect and influence the distribution of ecological resources in space and time. The monitoring of animal movement by telemetry devices is being increasingly used to inform management of marine, freshwater and terrestrial ecosystems. Here, we brought together academics, and environmental managers to determine the extent of animal movement research in the Australasian region, and assess the opportunities and challenges in the sharing and reuse of these data. This working group was formed under the Australian Centre for Ecological Analysis and Synthesis (ACEAS), whose overall aim was to facilitate trans-organisational and transdisciplinary synthesis. We discovered that between 2000 and 2012 at least 501 peer-reviewed scientific papers were published that report animal location data collected by telemetry devices from within the Australasian region. Collectively, this involved the capture and electronic tagging of 12 656 animals. The majority of studies were undertaken to address specific management questions; rarely were these data used beyond their original intent. We estimate that approximately half (~500) of all animal telemetry projects undertaken remained unpublished, a similar proportion were not discoverable via online resources, and less than 8.8% of all animals tagged and tracked had their data stored in a discoverable and accessible manner. Animal telemetry data contain a wealth of information about how animals and species interact with each other and the landscapes they inhabit. These data are expensive and difficult to collect and can reduce survivorship of the tagged individuals, which implies an ethical obligation to make the data available to the scientific community. This is the first study to quantify the gap between telemetry devices placed on animals and findings/data published, and presents methods for improvement. Instigation of these strategies will enhance the cost-effectiveness of the research and maximise its impact on the management of natural resources.


Assuntos
Biodiversidade , Monitoramento Ambiental/métodos , Telemetria , Animais , Australásia , Ecossistema , Sistemas de Informação Geográfica
8.
PLoS One ; 8(5): e57640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671558

RESUMO

Recently, there has been much interest in describing the behaviour of animals by fitting various movement models to tracking data. Despite this interest, little is known about how the temporal 'grain' of movement trajectories affects the outputs of such models, and how behaviours classified at one timescale may differ from those classified at other scales. Here, we present a study in which random-walk state-space models were fit both to nightly geospatial lifelines of common brushtail possums (Trichosurus vulpecula) and synthetic trajectories parameterised from empirical observations. Observed trajectories recorded by GPS collars at 5-min intervals were sub-sampled at periods varying between 10 and 60 min, to approximate the effect of collecting data at lower sampling frequencies. Markov-Chain Monte-Carlo fitting techniques, using information about movement rates and turning angles between sequential fixes, were employed using a Bayesian framework to assign distinct behavioural states to individual location estimates. We found that in trajectories with higher temporal granularities behaviours could be clearly differentiated into 'slow-area-restricted' and 'fast-transiting' states, but for trajectories with longer inter-fix intervals this distinction was markedly less obvious. Specifically, turning-angle distributions varied from being highly peaked around either 0° or 180° at fine temporal scales, to being uniform across all angles at low sampling intervals. Our results highlight the difficulty of comparing model results amongst tracking-data sets that vary substantially in temporal grain, and demonstrate the importance of matching the observed temporal resolution of tracking devices to the timescales of behaviours of interest, otherwise inter-individual comparisons of inferred behaviours may be invalid, or important biological information may be obscured.


Assuntos
Distribuição Animal , Modelos Biológicos , Trichosurus , Algoritmos , Animais , Teorema de Bayes , Simulação por Computador , Cadeias de Markov , Método de Monte Carlo , Nova Zelândia
9.
J Theor Biol ; 317: 175-85, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23079283

RESUMO

We present a new measure for analysing animal movement data, which we term a 'Multi-Scale Straightness Index' (MSSI). The measure is a generalisation of the 'Straightness Index', the ratio of the beeline distance between the start and end of a track to the total distance travelled. In our new measure, the Straightness Index is computed repeatedly for track segments at all possible temporal scales. The MSSI offers advantages over the standard Straightness Index, and other simple measures of track tortuosity (such as Sinuosity and Fractal Dimension), because it provides multiple characterisations of straightness, rather than just a single summary measure. Thus, comparisons can be made among different segments of trajectories and changes in behaviour can be inferred, both over time and at different temporal granularities. The measure also has an important advantage over several recent and increasingly popular methods for detecting behavioural changes in time-series locational data (e.g., state-space models and positional entropy methods), in that it is extremely simple to compute. Here, we demonstrate use of the MSSI on both synthetic and real animal-movement trajectories. We show how behavioural changes can be inferred within individual tracks and how behaviour varies across spatio-temporal scales. Our aim is to present a useful tool for researchers requiring a computationally simple but effective means of analysing the movement patterns of animals.


Assuntos
Migração Animal/fisiologia , Estatística como Assunto/métodos , Animais , Columbidae/fisiologia , Movimento/fisiologia , Trichosurus/fisiologia
10.
J Appl Anim Welf Sci ; 15(3): 189-207, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22742197

RESUMO

Trapping, handling, and deployment of tracking devices (tagging) are essential aspects of many research and conservation studies of wildlife. However, often these activities place nonhuman animals under considerable physical or psychological distress, which disrupts normal patterns of behavior and may ultimately result in deleterious effects on animal welfare and the validity of research results. Thus, knowledge of how trapping, handling, and tagging alter the behavior of research animals is essential if measures to ameliorate stress-related effects are to be developed and implemented. This article describes how time-stamped location data obtained by global-positioning-system telemetry can be used to retrospectively characterize acute behavioral responses to trapping, handling, and tagging in free-ranging animals used for research. Methods are demonstrated in a case study of the common brushtail possum, a semiarboreal phalangerid marsupial native to Australia. The study discusses possible physiological causes of observed effects and offers general suggestions regarding simple means to reduce trapping-handling-and-tagging-related stress in field studies of vertebrates.


Assuntos
Trichosurus/psicologia , Animais , Animais Selvagens/psicologia , Comportamento Animal , Feminino , Sistemas de Informação Geográfica , Manobra Psicológica , Masculino , Nova Zelândia , Estresse Psicológico/etiologia , Estresse Psicológico/psicologia , Telemetria
11.
PLoS One ; 6(6): e21087, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695132

RESUMO

Behaviour and distribution of striped marlin within the southwest Pacific Ocean were investigated using electronic tagging data collected from 2005-2008. A continuous-time correlated random-walk Kalman filter was used to integrate double-tagging data exhibiting variable error structures into movement trajectories composed of regular time-steps. This state-space trajectory integration approach improved longitude and latitude error distributions by 38.5 km and 22.2 km respectively. Using these trajectories as inputs, a behavioural classification model was developed to infer when, and where, 'transiting' and 'area-restricted' (ARB) pseudo-behavioural states occurred. ARB tended to occur at shallower depths (108 ± 49 m) than did transiting behaviours (127 ± 57 m). A 16 day post-release period of diminished ARB activity suggests that patterns of behaviour were affected by the capture and/or tagging events, implying that tagged animals may exhibit atypical behaviour upon release. The striped marlin in this study dove deeper and spent greater time at ≥ 200 m depth than those in the central and eastern Pacific Ocean. As marlin reached tropical latitudes (20-21 °S) they consistently reversed directions, increased swimming speed and shifted to transiting behaviour. Reversals in the tropics also coincided with increases in swimming depth, including increased time ≥ 250 m. Our research provides enhanced understanding of the behavioural ecology of striped marlin. This has implications for the effectiveness of spatially explicit population models and we demonstrate the need to consider geographic variation when standardizing CPUE by depth, and provide data to inform natural and recreational fishing mortality parameters.


Assuntos
Comportamento Animal , Equipamentos e Provisões Elétricas , Perciformes , Migração Animal , Animais , Pesqueiros , Oceano Pacífico , Dinâmica Populacional , Fatores de Tempo
12.
PLoS One ; 5(2): e9236, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20174652

RESUMO

BACKGROUND: Determining the foraging movements of pelagic seabirds is fundamental for their conservation. However, the vulnerability and elusive lifestyles of these animals have made them notoriously difficult to study. Recent developments in satellite telemetry have enabled tracking of smaller seabirds during foraging excursions. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first successful precision tracking of a c. 700 g seabird, the vulnerable Black Petrel, Procellaria parkinsoni, foraging at sea during the breeding season, using miniature GPS-logging technology. Employing a combination of high-resolution fixes and low-power duty-cycles, we present data from nine individual foraging excursions tracked during the chick-rearing period in February 2006. CONCLUSIONS/SIGNIFICANCE: We provide a snapshot of the species' foraging range and behaviour in relation to detailed underlying bathymetry off the coast of New Zealand, finding a significant relationship between foraging movements and regions of the shelf-break. We also highlight the potential of more sophisticated analyses to identify behavioural phenomena from position data alone.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Comportamento Predatório/fisiologia , Animais , Animais Recém-Nascidos , Ecossistema , Comportamento Alimentar/fisiologia , Feminino , Geografia , Masculino , Nova Zelândia , Oceanos e Mares , Telemetria/métodos , Fatores de Tempo
13.
Proc Biol Sci ; 274(1614): 1153-8, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17301015

RESUMO

The influence of the Earth's magnetic field on locomotory orientation has been studied in many taxa but is best understood for homing pigeons (Columba livia). Effects of experimentally induced and naturally occurring perturbations in the geomagnetic field suggest that pigeons are sensitive to changes in geomagnetic parameters. However, whether pigeons use the Earth's magnetic field for position determination remains unknown. Here we report an apparent orientation to the intensity gradient of the geomagnetic field observed in pigeons homing from sites in and around a magnetic anomaly. From flight trajectories recorded by GPS-based tracking devices, we noted that many pigeons released at unfamiliar sites initially flew, in some cases up to several kilometres, in directions parallel and/or perpendicular to the bearing of the local intensity field. This behaviour occurred irrespective of the homeward direction and significantly more often than what was expected by random chance. Our study describes a novel behaviour which provides strong evidence that pigeons when homing detect and respond to spatial variation in the Earth's magnetic field--information of potential use for navigation.


Assuntos
Columbidae/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Magnetismo , Orientação/fisiologia , Animais , Geografia
14.
Curr Opin Neurobiol ; 12(6): 735-44, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12490267

RESUMO

True navigation by animals is likely to depend on events occurring in the individual cells that detect magnetic fields. Minimum thresholds of detection, perception and 'interpretation' of magnetic field stimuli must be met if animals are to use a magnetic sense to navigate. Recent technological advances in animal tracking devices now make it possible to test predictions from models of navigation based on the use of variations in magnetic intensity.


Assuntos
Magnetismo , Orientação/fisiologia , Percepção Espacial/fisiologia , Animais , Sinais (Psicologia) , Percepção de Distância/fisiologia , Planeta Terra
15.
Artigo em Inglês | MEDLINE | ID: mdl-12209343

RESUMO

The sensory basis of olfactory search behavior was investigated in the banded kokopu, Galaxias fasciatus, using a flow tank. In the presence of a 2 cm s(-1) current flow, banded kokopu use both water current and chemical information to locate a food odor source. The superficial neuromasts of the lateral line system mediate the rheotactic component of the odor search. A physical block of one olfactory nostril did not affect the olfactory search strategy employed by banded kokopu in still water or in the presence of a current flow. Thus, there is no evidence that banded kokopu perform a bilateral comparison of the olfactory stimulus during their odor search. Previously, olfaction and gustation have been the only sensory systems shown to directly mediate orientation and movement towards odor sources in fish. The use of hydrodynamic cues by fish in location of an olfactory source has been previously proposed, but without direct experimental identification of the sensory systems employed. This study identifies the contributing roles of both olfactory and hydrodynamic sensory systems to the olfactory search repertoire of fish.


Assuntos
Comportamento Apetitivo/fisiologia , Mecanorreceptores/fisiologia , Salmoniformes/fisiologia , Olfato/fisiologia , Animais , Quimiotaxia/fisiologia , Sinais (Psicologia) , Movimento (Física) , Privação Sensorial/fisiologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...