Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 12(2): 113-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15665866

RESUMO

The crystal structure of an open form of the Escherichia coli MscS mechanosensitive channel was recently solved. However, the conformation of the closed state and the gating transition remain uncharacterized. The pore-lining transmembrane helix contains a conserved glycine- and alanine-rich motif that forms a helix-helix interface. We show that introducing 'knobs' on the smooth glycine face by replacing glycine with alanine, and substituting conserved alanines with larger residues, increases the pressure required for gating. Creation of a glycine-glycine interface lowers activation pressure. The importance of residues Gly104, Ala106 and Gly108, which flank the hydrophobic seal, is demonstrated. A new structural model is proposed for the closed-to-open transition that involves rotation and tilt of the pore-lining helices. Introduction of glycine at Ala106 validated this model by acting as a powerful suppressor of defects seen with mutations at Gly104 and Gly108.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Glicina/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Alanina/genética , Alanina/metabolismo , Eletrofisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glicina/genética , Canais Iônicos/genética , Modelos Moleculares , Mutação/genética , Fenótipo , Estrutura Terciária de Proteína
2.
J Am Chem Soc ; 125(3): 830-9, 2003 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-12526684

RESUMO

Atomic force microscopy has been used to image the various facets of two morphologically distinct samples of silicalite. The smaller (20 microm) sample A crystals show 1 nm high radial growth terraces. The larger (240 microm) sample B crystals show growth terraces 1 to 2 orders of magnitude higher than the terraces on sample A with growth edges parallel to the crystallographic axes. Moreover, the terraces on the (010) face are significantly higher than the terraces on the (100) face - inconsistent with the previously proposed 90 degrees intergrowth structure. Sample A highlights that under certain synthetic conditions, silicalite grows in a manner akin to zeolites Y and A, via the deposition of layers comprising, in the case of silicalite, pentasil chains. It is probable that the rate of terrace advance is identical on the (010) and (100) faces, and it is the rate of terrace nucleation that dictates the overall growth rate of each facet and hence the relative size expressed in the final crystal morphology. Analysis of the growth terraces of sample B and detailed consideration of the structures of both MFI, and a closely related material MEL, lead to the proposal of a generalized growth mechanism for silicalite including the incorporation of defects within the structure. These defects are thought to be responsible for both the relative and the absolute terrace heights observed and may also explain the hourglass phenomenon observed by optical microscopy. The implications of this growth mechanism, supported by results of infrared microscopy, generate a new dimension to the continuing debate on the existence of intergrowths within one of the most important structures relevant to zeolite catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...