Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1266, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38092861

RESUMO

Culture-adapted human mesenchymal stromal cells (hMSCs) are appealing candidates for regenerative medicine applications. However, these cells implanted in lesions as single cells or tissue constructs encounter an ischemic microenvironment responsible for their massive death post-transplantation, a major roadblock to successful clinical therapies. We hereby propose a paradigm shift for enhancing hMSC survival by designing, developing, and testing an enzyme-controlled, nutritive hydrogel with an inbuilt glucose delivery system for the first time. This hydrogel, composed of fibrin, starch (a polymer of glucose), and amyloglucosidase (AMG, an enzyme that hydrolyze glucose from starch), provides physiological glucose levels to fuel hMSCs via glycolysis. hMSCs loaded in these hydrogels and exposed to near anoxia (0.1% pO2) in vitro exhibited improved cell viability and angioinductive functions for up to 14 days. Most importantly, these nutritive hydrogels promoted hMSC viability and paracrine functions when implanted ectopically. Our findings suggest that local glucose delivery via the proposed nutritive hydrogel can be an efficient approach to improve hMSC-based therapeutic efficacy.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Sobrevivência Celular , Glucose/metabolismo , Amido/metabolismo
2.
Cells ; 10(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572905

RESUMO

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Células-Tronco Mesenquimais/patologia , Animais , Diferenciação Celular , Proliferação de Células , Leucócitos Mononucleares/patologia , Masculino , Camundongos Nus , Neovascularização Fisiológica , Osteogênese , Ratos Zucker , Magreza/patologia
3.
Stem Cells ; 38(1): 22-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408238

RESUMO

In tissue engineering and regenerative medicine, stem cell-specifically, mesenchymal stromal/stem cells (MSCs)-therapies have fallen short of their initial promise and hype. The observed marginal, to no benefit, success in several applications has been attributed primarily to poor cell survival and engraftment at transplantation sites. MSCs have a metabolism that is flexible enough to enable them to fulfill their various cellular functions and remarkably sensitive to different cellular and environmental cues. At the transplantation sites, MSCs experience hostile environments devoid or, at the very least, severely depleted of oxygen and nutrients. The impact of this particular setting on MSC metabolism ultimately affects their survival and function. In order to develop the next generation of cell-delivery materials and methods, scientists must have a better understanding of the metabolic switches MSCs experience upon transplantation. By designing treatment strategies with cell metabolism in mind, scientists may improve survival and the overall therapeutic potential of MSCs. Here, we provide a comprehensive review of plausible metabolic switches in response to implantation and of the various strategies currently used to leverage MSC metabolism to improve stem cell-based therapeutics.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Humanos
4.
Stem Cells ; 36(3): 363-376, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266629

RESUMO

Mesenchymal stem cells (MSCs) hold considerable promise in tissue engineering (TE). However, their poor survival when exogenously administered limits their therapeutic potential. Previous studies from our group demonstrated that lack of glucose (glc) (but not of oxygen) is fatal to human MSCs because it serves as a pro-survival and pro-angiogenic molecule for human MSCs (hMSCs) upon transplantation. However, which energy-providing pathways MSCs use to metabolize glc upon transplantation? Are there alternative energetic nutrients to replace glc? And most importantly, do hMSCs possess significant intracellular glc reserves for ensuring their survival upon transplantation? These remain open questions at the forefront of TE based-therapies. In this study, we established for the first time that the in vivo environment experienced by hMSCs is best reflected by near-anoxia (0.1% O2 ) rather than hypoxia (1%-5% O2 ) in vitro. Under these near-anoxia conditions, hMSCs rely almost exclusively on glc through anerobic glycolysis for ATP production and are unable to use either exogenous glutamine, serine, or pyruvate as energy substrates. Most importantly, hMSCs are unable to adapt their metabolism to the lack of exogenous glc, possess a very limited internal stock of glc and virtually no ATP reserves. This lack of downregulation of energy turnover as a function of exogenous glc level results in a rapid depletion of hMSC energy reserves that explains their poor survival rate. These new insights prompt for the development of glc-releasing scaffolds to overcome this roadblock plaguing the field of TE based-therapies. Stem Cells 2018;36:363-376.


Assuntos
Sobrevivência Celular/fisiologia , Glucose/metabolismo , Glicólise/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/fisiologia , Hipóxia Celular/fisiologia , Glutamina/metabolismo , Humanos , Oxigênio/metabolismo , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...