Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 151(1): 184-193, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20675054

RESUMO

Spinal cord injury (SCI) is a major cause of persistent neuropathic pain of central origin. Recent evidence suggests neuropathic pain in clinically complete SCI patients correlates with limited sensory function below the lesion (sensory discomplete). On this basis we examined if the onset of mechanical hyperalgesia was different in rodents after a severe incomplete clip-compression SCI versus a complete spinal cord transection at thoracic segment T13. Above-level withdrawal behaviors evoked by forepaw stimulation provided evidence of mechanical hyperalgesia after incomplete but not complete SCI, whereas below-level responses evoked by hindpaw stimulation revealed hypersensitivity after both injuries. The latency of the above-level response was 4-5 wks but was longer after a moderate clip-compression injury. Mechanical hyperalgesia was fully reversed by three analgesic drugs used in treating neuropathic SCI pain, but their duration of action differed significantly, showing a rank order of amitriptyline (24-48 h)≫morphine (6 h)>gabapentin (2 h). Evidence of central sensitization in cervical spinal cord segments that receive sensory projections from the forelimbs was provided by immunohistochemistry for Zif268, a functional marker of neuroplasticity. Zif268-immunoreactive neurons in laminae I/II increased in response to repetitive noxious forepaw stimulation in the incomplete SCI group, and this response was reduced in the complete transection and sham-operated groups. These data are consistent with the hypothesis that neuropathic pain of cord origin is more likely to develop after SCI when there is an incomplete loss of axons traversing the lesion.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Limiar da Dor/efeitos dos fármacos , Traumatismos da Medula Espinal/complicações , Aminas/uso terapêutico , Amitriptilina/uso terapêutico , Animais , Contagem de Células , Estudos Cross-Over , Ácidos Cicloexanocarboxílicos/uso terapêutico , Modelos Animais de Doenças , Método Duplo-Cego , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Lateralidade Funcional , Gabapentina , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Morfina/uso terapêutico , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/classificação , Ácido gama-Aminobutírico/uso terapêutico
2.
J Comp Neurol ; 504(6): 702-15, 2007 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17722034

RESUMO

The lateral subdivision of the central nucleus of the amygdala (CeA) comprises two groups of gamma-aminobutyric acid (GABA) neurons that express corticotrophin-releasing hormone (CRH) and enkephalin. Regulation of the expression and release of these neuropeptides by glucocorticoids and other factors has been suggested to have a regulatory function on the diverse somatic, autonomic, and neuroendocrine responses that are coordinated by the CeA. Because another opioid peptide, dynorphin, has been reported to be also expressed by neurons in the lateral CeA, this study examined the neuronal expression of this kappa-opioid (KOP) receptor-preferring ligand by using immunohistochemistry for the precursor peptide prodynorphin. Prodynorphin neurons in the extended amygdala were observed mostly in the medial and central regions of the lateral CeA and the oval of the bed nucleus of the stria terminalis (BST). About one-third of the prodynorphin neurons in the CeA coexpressed CRH, whereas no coexpression with CRH was detected in the BST. Prodynorphin was not expressed by calbindin neurons in the medial part of the lateral CeA, and indirect evidence suggested that it was not expressed by enkephalin neurons. Coexpression of prodynorphin in extrahypothalamic CRH neurons in the CeA could provide an anatomical basis for regulation of the stress responses and other CRH-related functions by the brain dynorphin/KOP receptor system.


Assuntos
Tonsila do Cerebelo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Encefalinas/metabolismo , Precursores de Proteínas/metabolismo , Tonsila do Cerebelo/citologia , Animais , Contagem de Células/métodos , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Núcleos Septais/metabolismo
3.
Endocrinology ; 147(9): 4486-95, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16763061

RESUMO

11 beta-Hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) catalyzes regeneration of active intracellular glucocorticoids in fat, liver, and discrete brain regions. Although overexpression of 11 beta-HSD1 in adipose tissue causes hyperphagia and the metabolic syndrome, male 11 beta-HSD1 null (11 beta-HSD1-/-) mice resist metabolic disease on high-fat (HF) diet, but also show hyperphagia. This suggests 11 beta-HSD1 may influence the central actions of glucocorticoids on appetite and perhaps energy balance. We show that 11 beta-HSD1-/- mice express lower hypothalamic mRNA levels of the anorexigenic cocaine and amphetamine-regulated transcript and melanocortin-4 receptor, but higher levels of the orexigenic melanin-concentrating hormone mRNAs than controls (C57BL/6J) on a low-fat diet (11% fat). HF (58% fat) diet promoted transient ( approximately 8 wk) hyperphagia and decreased food efficiency in 11 beta-HSD1-/- mice and decreased melanocortin-4 receptor mRNA expression in control but not 11 beta-HSD1-/- mice. 11 beta-HSD1-/- mice showed a HF-mediated up-regulation of the orexigenic agouti-related peptide (AGRP) mRNA in the arcuate nucleus which paralleled the transient HF hyperphagia. Conversely, control mice showed a rapid (48 h) HF-mediated increase in arcuate 11 beta-HSD1 associated with subsequent down-regulation of AGRP. This regulatory pattern was unexpected because glucocorticoids increase AGRP, suggesting an alternate hyperphagic mechanism despite partial colocalization of 11 beta-HSD1 and AGRP in arcuate nucleus cells. One major alternate mechanism governing selective fat ingestion and the AGRP system is endogenous opioids. Treatment of HF-fed mice with the mu opioid agonist DAMGO recapitulated the HF-induced dissociation of arcuate AGRP expression between control and 11 beta-HSD1-/- mice, whereas the opioid antagonist naloxone given with HF induced a rise in arcuate AGRP and blocked HF-diet induction of 11 beta-HSD1. These data suggest that 11 beta-HSD1 in brain plays a role in the adaptive restraint of excess fat intake, in part by increasing inhibitory opioid tone on AGRP expression in the arcuate nucleus.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , Núcleo Arqueado do Hipotálamo/enzimologia , Gorduras na Dieta/administração & dosagem , Hiperfagia/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/deficiência , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Proteína Relacionada com Agouti , Animais , Corticosterona/sangue , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Indução Enzimática , Feminino , Expressão Gênica , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intercelular , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/química , Neuropeptídeo Y/genética , Pró-Opiomelanocortina/genética , Proteínas/genética , RNA Mensageiro/análise , Receptor Tipo 4 de Melanocortina/genética , Receptores Opioides mu/agonistas , Hormônios Tireóideos/sangue , Aumento de Peso
4.
Diabetes ; 54(12): 3371-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306351

RESUMO

Despite major advances in understanding monogenic causes of morbid obesity, the complex genetic and environmental etiology of idiopathic metabolic syndrome remains poorly understood. One hypothesis suggests that similarities between the metabolic disease of plasma glucocorticoid excess (Cushing's syndrome) and idiopathic metabolic syndrome results from increased glucocorticoid reamplification within adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1). Indeed, 11beta-HSD-1 is now a major therapeutic target. Because much supporting evidence for a role of adipose 11beta-HSD-1 comes from transgenic or obese rodents with single-gene mutations, we investigated whether the predicted traits of metabolic syndrome and glucocorticoid metabolism were coassociated in a unique polygenic model of obesity developed by long-term selection for divergent fat mass (Fat and Lean mice with 23 vs. 4% fat as body weight, respectively). Fat mice exhibited an insulin-resistant metabolic syndrome including fatty liver and hypertension. Unexpectedly, Fat mice had a marked intra-adipose (11beta-HSD-1) and plasma glucocorticoid deficiency but higher liver glucocorticoid action. Furthermore, metabolic disease was exacerbated only in Fat mice when challenged with exogenous glucocorticoids or a high-fat diet. Our data suggest that idiopathic metabolic syndrome might associate with such a novel pattern of glucocorticoid action and sensitivity in humans, with implications for tissue-specific therapeutic targeting of 11beta-HSD-1.


Assuntos
Glicemia/metabolismo , Glucocorticoides/sangue , Síndrome Metabólica/genética , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/patologia , Animais , Corticosterona/sangue , Cruzamentos Genéticos , Síndrome de Cushing/sangue , Epididimo , Insulina/sangue , Leptina/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Modelos Genéticos , Obesidade/genética , Obesidade/patologia , RNA/genética , RNA/isolamento & purificação , Pele , Triglicerídeos/metabolismo
5.
J Clin Endocrinol Metab ; 88(5): 2126-34, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12727965

RESUMO

Two forms of GnRH (GnRH-I and GnRH-II) are expressed in the hypothalamus of humans and rhesus monkeys, but their relative abilities to stimulate LH and FSH release are unknown. Therefore, young (8-12 yr) and old (21-23 yr) female rhesus monkeys were treated i.v. with bolus injections of either GnRH-I or GnRH-II (dose range, 0.01-10 microg/kg body weight); serial blood samples were remotely collected through a vascular catheter for up to 2 h after injection. Overall, plasma LH concentrations were similarly elevated after treatment with GnRH-I and GnRH-II, and the responses were slightly greater in the younger animals. Although plasma FSH concentrations were unaffected by a single exposure to GnRH-I or GnRH-II, they showed a similar significant increase after repeated exposures (every 2 h for 24 h). In a subsequent experiment, antide, a GnRH-I receptor antagonist, was administered (100 microg/kg body weight) together with a single injection of GnRH-I or GnRH-II (1 microg/kg body weight). As expected, GnRH-I-induced LH release was significantly attenuated by this combined treatment; moreover, GnRH-II-induced LH release was completely blocked. Taken together, these data show that GnRH-II can potently stimulate gonadotropin release in vivo and that this action is likely mediated through the GnRH-I receptor.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante/metabolismo , Envelhecimento , Animais , Feminino , Humanos , Cinética , Macaca mulatta , Oligopeptídeos/farmacologia , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/fisiologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...