Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005434

RESUMO

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomics resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomics resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as critical models for understanding widespread genomic characteristics, including evolutionary genome expansions and contractions given they have the largest range in genome sizes of any animal taxon and multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The advent of long-read sequencing technologies, along with computational techniques that enhance scaffolding capabilities and streamline computational workload is now enabling the ability to overcome some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC) in early 2023. This burgeoning community already has more than 282 members from 41 countries (6 in Africa, 131 in the Americas, 27 in Asia, 29 in Australasia, and 89 in Europe). The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and outline how the AGC can enable amphibian genomics research to "leap" to the next level.

2.
Nat Commun ; 15(1): 579, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233380

RESUMO

Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.


Assuntos
Cromatina , Evolução Molecular , Animais , Cromatina/genética , Genoma/genética , Anuros/genética , Xenopus/genética , Centrômero/genética
3.
Evolution ; 76(5): 1052-1061, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35275604

RESUMO

Transposable elements (TEs) are sequences that replicate and move throughout genomes, and they can be silenced through methylation of cytosines at CpG dinucleotides. TE abundance contributes to genome size, but TE silencing variation across genomes of different sizes remains underexplored. Salamanders include most of the largest C-values - 9 to 120 Gb. We measured CpG methylation levels in salamanders with genomes ranging from 2N = ∼58 Gb to 4N = ∼116 Gb. We compared these levels to results from endo- and ectothermic vertebrates with more typical genomes. Salamander methylation levels are approximately 90%, higher than all endotherms. However, salamander methylation does not differ from other ectotherms, despite an approximately 100-fold difference in nuclear DNA content. Because methylation affects the nucleotide compositional landscape through 5-methylcytosine deamination to thymine, we quantified salamander CpG dinucleotide levels and compared them to other vertebrates. Salamanders and other ectotherms have comparable CpG levels, and ectotherm levels are higher than endotherms. These data show no shift in global methylation at the base of salamanders, despite a dramatic increase in TE load and genome size. This result is reconcilable with previous studies that considered endothermy and ectothermy, which may be more important drivers of methylation in vertebrates than genome size.


Assuntos
5-Metilcitosina , Urodelos , Animais , Temperatura Corporal , Desaminação , Tamanho do Genoma , Metilação , Urodelos/genética , Vertebrados/genética
4.
Nat Ecol Evol ; 3(6): 892-899, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061476

RESUMO

Late Cretaceous dinosaur assemblages of North America-characterized by gigantic tyrannosaurid predators, and large-bodied herbivorous ceratopsids and hadrosaurids-were highly successful from around 80 million years ago (Ma) until the end of the 'Age of Dinosaurs' 66 Ma. However, the origin of these iconic faunas remains poorly understood because of a large, global sampling gap in the mid-Cretaceous, associated with an extreme sea-level rise. We describe the most complete skeleton of a predatory dinosaur from this gap, which belongs to a new tyrannosauroid theropod from the Middle Turonian (~92 Ma) of southern Laramidia (western North America). This taxon, Suskityrannus hazelae gen. et sp. nov., is a small-bodied species phylogenetically intermediate between the oldest, smallest tyrannosauroids and the gigantic, last-surviving tyrannosaurids. The species already possesses many key features of the tyrannosaurid bauplan, including the phylogenetically earliest record of an arctometatarsalian foot in tyrannosauroids, indicating that the group developed enhanced cursorial abilities at a small body size. Suskityrannus is part of a transitional Moreno Hill (that is, Zuni) dinosaur assemblage that includes dinosaur groups that became rare or were completely absent in North America around the final 15 Myr of the North American Cretaceous before the end-Cretaceous mass extinction, as well as small-bodied forebears of the large-bodied clades that dominated at this time.


Assuntos
Dinossauros , Animais , Fósseis , América do Norte , Paleontologia , Filogenia , Estados Unidos
5.
G3 (Bethesda) ; 9(2): 581-589, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30606754

RESUMO

The skin secretions of many frogs have genetically-encoded, endogenous antimicrobial peptides (AMPs). Other species, especially aposematic poison frogs, secrete exogenously derived alkaloids that serve as potent defense molecules. The origins of these defense systems are not clear, but a novel bile-acid derived metabolite, tauromantellic acid, was recently discovered and shown to be endogenous in poison frogs (Mantella, Dendrobates, and Epipedobates). These observations raise questions about the evolutionary history of AMP genetic elements, the mechanism and function of tauromatellic acid production, and links between these systems. To understand the diversity and expression of AMPs among frogs, we assembled skin transcriptomes of 13 species across the anuran phylogeny. Our analyses revealed a diversity of AMPs and AMP expression levels across the phylogenetic history of frogs, but no observations of AMPs in Mantella We examined genes expressed in the bile-acid metabolic pathway and found that CYP7A1 (Cytochrome P450), BAAT (bile acid-CoA: amino acid N-acyltransferase), and AMACR (alpha-methylacyl-CoA racemase) were highly expressed in the skin of M. betsileo and either lowly expressed or absent in other frog species. In particular, CYP7A1 catalyzes the first reaction in the cholesterol catabolic pathway and is the rate-limiting step in regulation of bile acid synthesis, suggesting unique activation of the bile acid pathway in Mantella skin. The activation of the bile acid pathway in the skin of Mantella and the lack of observed AMPs fuel new questions about the evolution of defense compounds and the ectopic expression of the bile-acid pathway.


Assuntos
Proteínas de Anfíbios/genética , Peptídeos Catiônicos Antimicrobianos/genética , Anuros/genética , Ácidos e Sais Biliares/biossíntese , Transcriptoma , Proteínas de Anfíbios/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anuros/classificação , Anuros/metabolismo , Ácidos e Sais Biliares/genética , Filogenia , Pele/metabolismo
6.
Evolution ; 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29926914

RESUMO

Quantifying introgression between sexual species and polyploid lineages traditionally thought to be asexual is an important step in understanding what drives the longevity of putatively asexual groups. Here, we capitalize on three recent innovations-ultraconserved element (UCE) sequencing, bioinformatic techniques for identifying genome-specific variation in polyploids, and model-based methods for evaluating historical gene flow-to measure the extent and tempo of introgression over the evolutionary history of an allopolyploid lineage of all-female salamanders and two ancestral sexual species. Our analyses support a scenario in which the genomes sampled in unisexual salamanders last shared a common ancestor with genomes in their parental species ∼3.4 million years ago, followed by a period of divergence between homologous genomes. Recently, secondary introgression has occurred at different times with each sexual species during the last 500,000 years. Sustained introgression of sexual genomes into the unisexual lineage is the defining characteristic of their reproductive mode, but this study provides the first evidence that unisexual genomes have undergone long periods of divergence without introgression. Unlike other sperm-dependent taxa in which introgression is rare, the alternating periods of divergence and introgression between unisexual salamanders and their sexual relatives could explain why these salamanders are among the oldest described unisexual animals.

7.
Mol Ecol ; 27(2): 311-312, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561075

RESUMO

Reproductive isolation is the result of either the inability to produce viable and fertile offspring or the avoidance of mating altogether. While these mechanisms can evolve either over time via genetic drift or natural selection, the genetic result is usually a complex set of traits that are often linked. Explaining how reproductive isolation proceeds from the initiation of divergence to the complete prevention of mating is often a difficult task, as the underlying genes for traits associated with reproductive isolation can change via molecular evolution and subsequent protein coding alterations or through alterations of gene expression regulation. In this issue of Molecular Ecology, Treer, Maex, VanBocxlaer, Proost, and Bossuyt () use transcriptomic, proteomic and phylogenetic analyses to show that species-specific sex pheromones are the result of gradual sequence divergence on the same set of proteins in two closely related newt species (Ichthyosaura alpestris and Lissotriton helveticus). This study shows that salamander pheromone systems provide an enticing opportunity to connect the evolution of reproductive isolation to the changes in genes that underlie a key phenotype.


Assuntos
Filogenia , Atrativos Sexuais , Animais , Feromônios/genética , Proteômica , Salamandridae
8.
Genome Biol Evol ; 9(4): 968-980, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369297

RESUMO

Polyploidy is increasingly recognized as a driver of biological diversity. How and why polyploidization affects gene expression is critical to understanding the link between ploidy elevation and diversification. In polyploid plants, multiple studies have demonstrated that ploidy elevation can confer major but variable consequences for gene expression, ranging from gene-by-gene alterations to entirely silenced genomes. By contrast, animal polyploids remain largely uncharacterized. Accordingly, how animals respond to and manage polyploidy events is not understood. Here, we address this important knowledge gap by analyzing transcriptomes from a triploid hybrid animal, a unisexual Ambystoma salamander, and three sexual Ambystoma species that represent all three parental genomes in the unisexual. We used a novel bioinformatics pipeline that includes competitively mapping triploid sequences to a reference set of orthologous genes in the sexual species to evaluate subgenome expression. Our comparisons of gene expression levels across the three parental genomes revealed that the unisexual triploid displays a pattern of genome balance, where 72% of the genes analyzed were expressed equally among the subgenomes. This result is strikingly different from the genome imbalance typically observed in hybrid polyploid plants. Our analyses represent the first to address gene expression in a triploid hybrid animal and introduce a novel bioinformatic framework for analyzing transcriptomic data.

9.
Toxicon ; 118: 149-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27158112

RESUMO

Within some species, squirrels respond to variable selection from venomous snake predators by showing population-level variation in resistance, while between species, some rattlesnakes possess venom that is more effective at overcoming venom resistance in different species of squirrels. A functional evaluation of resistance variation to venom within and between species of squirrels and snakes can link resistance variation to its evolutionary causes across these different evolutionary scales. To do this, we compared the effectiveness of squirrel sera in inhibiting rattlesnake (Crotalus spp.) venom metalloproteinase activity between populations and between species to test for a response to local variation in selection from a single rattlesnake predator and for specialization of two resistant squirrel species to each of their distinct sympatric snake predators. We found that Timber Rattlesnake (Crotalus horridus) venom inhibition by Eastern gray squirrels (Sciurus carolinensis) is higher at a site where the rattlesnakes are present, which suggests selection may maintain venom resistance in populations separated by short distances. Next, we performed a reciprocal cross of venoms and sera from two rattlesnake and two squirrel species. This showed that squirrel resistance is lower when tested against venom from allopatric compared to sympatric rattlesnake species, demonstrating that squirrel inhibitors are specialized to sympatric venom and suggesting a tradeoff in terms of specialization to the venom of a specific species of rattlesnake predator. This pattern can be explained if inhibitors must recognize venom proteins and resistance evolution tracks venom evolution.


Assuntos
Adaptação Biológica , Venenos de Crotalídeos/antagonistas & inibidores , Crotalus/fisiologia , Inibidores Enzimáticos/sangue , Metaloproteases/antagonistas & inibidores , Proteínas de Répteis/antagonistas & inibidores , Sciuridae/fisiologia , Animais , California , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/toxicidade , Crotalus/crescimento & desenvolvimento , Resistência a Medicamentos , Feminino , Masculino , Metaloproteases/metabolismo , Ohio , Proteínas de Répteis/metabolismo , Sciuridae/sangue , Sciuridae/crescimento & desenvolvimento , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/fisiopatologia , Mordeduras de Serpentes/veterinária , Especificidade da Espécie , Árvores
10.
Mol Ecol ; 25(12): 2805-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27100619

RESUMO

Cryptic sex has been argued to explain the exceptional longevity of certain parthenogenetic vertebrate lineages, yet direct measurements of genetic exchange between sexual and apparently parthenogenetic forms are rare. Female unisexual mole salamanders (Ambystoma sp.) are the oldest known unisexual vertebrate lineage (~5 million years), and one hypothesis for their persistence is that allopolyploid female unisexuals periodically exchange haploid genomes 'genome exchange' during gynogenetic reproduction with males from sympatric sexual species. We test this hypothesis by using genome-specific microsatellite DNA markers to estimate the rates of genome exchange between sexual males and unisexual females in two ponds in NE Ohio. We also test the prediction that levels of gene flow should be higher for 'sympatric' (sexual males present) genomes in unisexuals compared to 'allopatric' (sexual males absent) unisexual genomes. We used a model testing framework in the coalescent-based program MIGRATE-N to compare models where unidirectional gene flow is present and absent between sexual species and unisexuals. As predicted, our results show higher levels of gene flow between sexuals and sympatric unisexual genomes compared to lower (likely artefactual) levels of gene flow between sexuals and allopatric unisexual genomes. Our results provide direct evidence that genome exchange between sexual and unisexual Ambystoma occurs and demonstrate that the magnitude depends on which sexual species are present. The relatively high levels of gene flow suggest that unisexuals must be at a selective advantage over sexual forms so as to avoid extinction due to genetic swamping through genome exchange.


Assuntos
Ambystoma/genética , Fluxo Gênico , Genética Populacional , Reprodução Assexuada , Animais , Feminino , Genoma , Genótipo , Masculino , Repetições de Microssatélites , Modelos Genéticos , Ohio
11.
Mol Ecol ; 23(11): 2811-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24787951

RESUMO

Distinct genetic markers should show similar patterns of differentiation between species reflecting their common evolutionary histories, yet there are increasing examples of differences in the biogeographic distribution of species-specific nuclear (nuDNA) and mitochondrial DNA (mtDNA) variants within and between species. Identifying the evolutionary processes that underlie these anomalous patterns of genetic differentiation is an important goal. Here, we analyse the putative mitonuclear discordance observed between sister species of mole salamanders (Ambystoma barbouri and A. texanum) in which A. barbouri-specific mtDNA is found in animals located within the range of A. texanum. We test three hypotheses for this discordance (undetected range expansion, mtDNA introgression, and hybridization) using nuDNA and mtDNA data analysed with methods that varied in the parameters estimated and the timescales measured. Results from a Bayesian clustering technique (structure), bidirectional estimates of gene flow (migrate-n and IMa2) and phylogeny-based methods (*beast, bucky) all support the conclusion that the discordance is due to geographically restricted mtDNA introgression from A. barbouri into A. texanum. Limited data on species-specific tooth morphology match this conclusion. Significant differences in environmental conditions exist between sites where A. texanum with and without A. barbouri-like mtDNA occur, suggesting a possible role for selection in the process of introgression. Overall, our study provides a general example of the value of using complimentary analyses to make inferences of the directionality, timescale, and source of mtDNA introgression in animals.


Assuntos
Ambystoma/genética , Evolução Molecular , Fluxo Gênico , Filogenia , Ambystoma/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Haplótipos , Dados de Sequência Molecular , Ohio , Análise de Sequência de DNA
12.
Stapp Car Crash J ; 48: v, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17230258
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...