Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACM BCB ; 2015: 156-165, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27796009

RESUMO

Public health decision makers need access to high resolution situation assessment tools for understanding the extent of various epidemics in different regions of the world. In addition, they need insights into the future course of epidemics by way of forecasts. Such forecasts are essential for planning the allocation of limited resources and for implementing several policy-level and behavioral intervention strategies. The need for such forecasting systems became evident in the wake of the recent Ebola outbreak in West Africa. We have developed EpiCaster, an integrated Web application for situation assessment and forecasting of various epidemics, such as Flu and Ebola, that are prevalent in different regions of the world. Using EpiCaster, users can assess the magnitude and severity of different epidemics at highly resolved spatio-temporal levels. EpiCaster provides time-varying heat maps and graphical plots to view trends in the disease dynamics. EpiCaster also allows users to visualize data gathered through surveillance mechanisms, such as Google Flu Trends (GFT) and the World Health Organization (WHO). The forecasts provided by EpiCaster are generated using different epidemiological models, and the users can select the models through the interface to filter the corresponding forecasts. EpiCaster also allows the users to study epidemic propagation in the presence of a number of intervention strategies specific to certain diseases. Here we describe the modeling techniques, methodologies and computational infrastructure that EpiCaster relies on to support large-scale predictive analytics for situation assessment and forecasting of global epidemics.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25530914

RESUMO

We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25346586

RESUMO

We describe the design and prototype implementation of Indemics (Interactive EpidemicSimulation)-a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also stop the simulation at any point, assess the state of the simulated system, and add additional interventions. Indemics is available to end-users via a web-based interface. Detailed performance analysis shows that Indemics greatly enhances the capability and productivity of simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate how Indemics was applied in some real case studies where complex interventions were implemented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...