Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 977: 176707, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830456

RESUMO

The 5-HT3 receptor and indoleamine 2,3-dioxygenase 1 (IDO1) enzyme play a crucial role in the pathogenesis of depression as their activation reduces serotonin contents in the brain. Since molecular docking analysis revealed lycopene as a potent 5-HT3 receptor antagonist and IDO1 inhibitor, we hypothesized that lycopene might disrupt the interplay between the 5-HT3 receptor and IDO1 to mitigate depression. In mice, the depression-like phenotypes were induced by inoculating Bacillus Calmette-Guerin (BCG). Lycopene (intraperitoneal; i.p.) was administered alone or in combination with 5-HT3 receptor antagonist ondansetron (i.p.) or IDO1 inhibitor minocycline (i.p.), and the behavioral screening was performed by the sucrose preference test, open field test, tail suspension test, and splash test which are based on the different principles. Further, the brains were subjected to the biochemical analysis of serotonin and its precursor tryptophan by the HPLC. The results showed depression-like behavior in BCG-inoculated mice, which was reversed by lycopene administration. Moreover, prior treatment with ondansetron or minocycline potentiated the antidepressant action of lycopene. Minocycline pretreatment also enhanced the antidepressant effect of ondansetron indicating the regulation of IDO1 activity by 5-HT3 receptor-triggered signaling. Biochemical analysis of brain samples revealed a drastic reduction in the levels of tryptophan and serotonin in depressed animals, which were restored following treatment with lycopene and its combination with ondansetron or minocycline. Taken together, the data from molecular docking, behavioral experiments, and biochemical estimation suggest that lycopene might block the 5-HT3 receptor and consequently inhibit the activity of IDO1 to ameliorate BCG-induced depression in mice.


Assuntos
Encéfalo , Depressão , Indolamina-Pirrol 2,3,-Dioxigenase , Licopeno , Receptores 5-HT3 de Serotonina , Animais , Licopeno/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Fenótipo , Simulação de Acoplamento Molecular , Serotonina/metabolismo , Vacina BCG/farmacologia , Ondansetron/farmacologia , Comportamento Animal/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Antidepressivos/farmacologia , Minociclina/farmacologia
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338960

RESUMO

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Assuntos
Canabinoides , Infarto do Miocárdio , Receptor CB1 de Canabinoide , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Dronabinol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...