Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 363, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796484

RESUMO

Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na+/K+-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI. In the present study, we demonstrated that neuronal autosis could occur in primary cortical neurons using two different stimulations enhancing autophagy flux and neuronal death: a neurotoxic concentration of Tat-BECN1 (an autophagy-inducing peptide) and a hypoxic/excitotoxic stimulus (mimicking neuronal death induced by cerebral HI). Both stimulations induce autophagic neuronal death (dependent on canonical autophagic genes and independent on apoptotic, necroptotic or ferroptotic pathways) with all morphological and biochemical (ATP1a-dependent) features of autosis. However, we demonstrated that autosis is not dependent on the ubiquitous subunit ATP1a1 in neurons, as in dividing cell types, but on the neuronal specific ATP1a3 subunit. We also provided evidence that, in different in vitro and in vivo models where autosis is induced, ATP1a3-BECN1 interaction is increased and prevented by cardiac glycosides treatment. Interestingly, an increase in ATP1a3-BECN1 interaction is also detected in dying neurons in the autoptic brains of human newborns with severe hypoxic-ischemic encephalopathy (HIE). Altogether, these results suggest that ATP1a3-BECN1-dependent autosis could play an important role in neuronal death in HI conditions, paving the way for the development of new neuroprotective strategies in hypoxic-ischemic conditions including in severe case of human HIE.


Assuntos
Hipóxia-Isquemia Encefálica , Neurônios , ATPase Trocadora de Sódio-Potássio , Animais , Humanos , Camundongos , Ratos , Morte Celular Autofágica/efeitos dos fármacos , Autofagia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Neurônios/metabolismo , Neurônios/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Glia ; 71(4): 957-973, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537556

RESUMO

Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.


Assuntos
Doença de Alzheimer , Mitocôndrias , Proteínas de Desacoplamento Mitocondrial , Animais , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...